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SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING
MODELS AND TRADING FOLKLORE

M. F. M. OSBORNE
Washington, D.C.

Five stock price sequences are examined quantitatively for structure
as predicated by: 1) a random walk model; 2) a continuously dif-
ferentiable price process; 3) a dynamic model consisting of transients
of a discrete process. The first and third models also make predictions
in agreement with trading lore. The data are examined by the method
of coincident events. Positive evidence is found for both the random
walk and discrete transient model, and slightly against the continuous
price process. The theoretical predictions seems better confirmed by
data at price minima than price maxima. The data are in partial dis-
agreement with the predictions of both the random walk and discrete
transient model that large volume and large second differences of price
should tend to occur at the same time. Some confirmation is found for
items of trading lore not predicted by theory. The non-random prop-
erties of stock prices are primarily found in short interval data (daily
and weekly) and in individual stock prices as opposed to an average.

1. INTRODUCTION

N A PREvVIOUS paper [7] we described a model for the dynamics of stock

trading, which was based on a generalization of the types of orders used to
buy and sell stocks and their manner of execution. This model led to a price
sequence as a discrete process, being composed of a sequence of finite sections
of “starting transients” of a difference equation. These transients were of the
form Ae* (t=an integer) with X real, complex or imaginary, and were assumed
to be started by concentrated bursts of orders, which in turn implies large vol-
ume. The conclusions of this model were found to be in qualitative agreement
with the “folklore” of stock trading.

It is the purpose of this paper to subject the above qualitative conclusions
to a more careful quantitative examination. We shall at the same time test for
some properties of other price models, notably the random walk model, and a
process which generates prices which are functions of the time, continuous with
continuous derivative, and not further specified. We shall also test for the
validity of certain concepts in the folklore of stock trading. We shall use the
method of coincident events in our analysis, exploiting the analogy between
stock market and Geiger counter data [6].

We can motivate our definitions and methods of analysis by some simple
examples, which are intended to show that the method of coincident events is
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merely a formalization of a simple and well known learning process. Let us
imagine, in the days when the mercury barometer was first invented, that it
was observed once a day, and the height of the mercury or pressure, p=p (f),
(cf., price of a stock) recorded. Not many days would be required to convince
the observer that the measurements fluctuated in the neighborhood of 30
inches, with occasional larger excursions upward or downward. Nor would it
be long before an observant individual might suspect that these excursions
were associated with unusual weather. Let us formalize this for a very simple
example, and indicate some generalizations.

Define a barometric “event” B (¢) as occuring on any day ¢ on which the
recording was less than 28 inches. Suppose there were observed Nons(B) =4 of
these in one year, out of T=365 “trials”. Define a storm event S(f) as a day
on which trees were blown down. Suppose Ns(S) =5 of these occurred in our
T =365 trials.

Now suppose there were two days in the year when a barometric event and
a storm occurred on the same day. Let us call this event a simple coincidence
or binary event, and denote it by (B(f), S(t)), the time argument ¢ being the
same for both to indicate a coincidence. So we have Nows(B(t), S(f)) =2. Are
these two coincidences convincing evidence that there is a connection between
the occurrence of a B and an S event? Intuitively one would certainly be sus-
picious that such was the case. A calculation will show that the suspicion is
certainly justified.

Assume: 1) B events occur independently of other B events; 2) S events
occur independently of other S events; 3) B and S events occur independently
of each other; 4) B and S events have the same probability from day to day
(i.e., time independent). Then the relative frequency, or estimated probability
of a B event, for one trial, is P(B)=Nos(B)/T=4/365. For an S event the
estimated probability is P(S) =Nows (S)/T =5/365. The estimated probability
of a coincidence at one trial is the product of these probabilities, P(B)P(S).
The “theoretical” or expected number & of coincidences in T' trials is then

Nineor = E(N(B(t), S(t)) = 365-(4-5)/(365)% = 0.055

The significance probability, or probability of actually observing two or more
coincidences under the null hypothesis of the four assumptions above is given
approximately by the Poisson distribution. Let A=0.055 be the theoretical or
expected number of coincidences in a year.

P(Nobs > 2|\ = 0.055) = X e™\e/k1 =2 22/2 = 0.0015 1)
k=2
Roughly one year in seven hundred would contain two or more (B(t), S(t))
coincidences, if these two events occurred independently, and we conclude, at
the significance level 0.0015, that barometric and storm events are not inde-
pendent.
Appendix I contains a derivation of the probability of coincidence when the
Poisson formula is not valid. It reduces to the Poisson formula in the case of
small numbers of events, relative to the number of trials.
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Evidently one can define other types of events and coincidences. A pressure
change event would occur if |Ap @] =|p®)—ptt— 1)| exceeded some specified
minimum. A “delayed coincidence” (| Ap @), S(t+1)), would denote a pressure
change event followed in one day by a storm. Colloquially, a negative Ap
event might be called a storm predictor (forecasting by one day), whereas the
low barometer event B was a storm indicator (happening ‘now’).

It should be evident from the above discussion that much of folklore or
personal knowledge is acquired and expressed by observation of coincident or
delayed coincidence events. We are going to define certain events in the se-
quence in time of stock market prices and volumes, and examine both market
folklore and the predictions of some price models, using the method of coinci-
dent events. Before doing so we must point out some essential elements in the
process of formalizing the method, and some limitations.

First, the data must be expressed as a discrete sequence of trials, even though
(as in the case of the barometer) it may be originally expressed continuously.
Second, the events must be defined so that just one event of a given type un-
ambiguously did or did not occur just once in each trial. Third, the mathe-
matics is much more simplified, if the events are defined so as to be relatively
infrequent compared to the number of trials—i.e., so that the estimated prob-
ability (number of events observed (single or coincidences)/number of trials)
is small. How small is “small enough” is sometimes debatable. A rule of thumb
for the probability would suggest 0.10, or perhaps 2/+/number of trials, will
usually be satisfactorily small. This rule of thumb is suggested by examining
the neglected terms and approximations required to obtain equation A6 in
the appendix.

We should point out that the Poisson series can be used to test both for an
excess or a deficiency, relative to independence of events. In the case of a de-
ficiency, the expected number M of coincidences must be greater than about 4,
or the test for deficiency cannot be very effective. The reason for this is that
the “low frequency tail” of the Poisson distribution (Eq. (1)) starts at k=0
(no observed binary events at all) and P(k=0)=e*, or ¢*=0.018. No ob-
served coincidences, if 4 are expected, is not quite significant at the 19, level,
but is at the 59 level. This problem can be alleviated in practice by combining
observations (see Section 7), using the fact that the sum of Poisson variables
is a Poisson variable, to reach a significant conclusion.

While we have indicated the convenience for the events to be infrequent
relative to the number of trials, they must not be so infrequent that there is
doubt, or insufficient evidence, that probability concepts are applicable. Thus
a person may (erroneously) have a lifelong phobia because of one unfortunate
coincidence between two events in childhood, one of which was unpleasant.
Adults are sometimes impressed by the coincidence of rare events such as some
remarkable astronomical phenomenon, and the occurrence of an historical
event on earth. But unless in practice both types are unambiguously definable,
and recognizable as possibly occurring more than once, there is not much point
in using statistics to argue for a connection in the probability sense between
them.

Finally we should point out that although the low barometer event was
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connected with the storm event in the above example, as a storm indicator it
was wrong more than half the time. One should not look for infallibility even
when the statistical evidence of a connection is quite good. In a practical sense
there are many other indicators of a storm available to the observer in addition
to the barometer. In our language, he can use triple and higher order coinci-
dences, either as a storm indicator, or a storm predictor. One can think of many
analogies to the above statements in the everday, unconscious use of the method
of coincident events.

2. EVENTS IN STOCK MARKET SEQUENCES

Let us now turn to stock market data, define some events in an unambiguous
way, and indicate the kind of coincidences that might be expected to occur
between them on the basis of folklore, or some price-generating models.

The four basic sequences we shall consider, specifying a basic or single
“trial” interval of a day, week, or month, are the sequence of high prices p.(t),
low prices p;(t), closing prices p.(t), and the volume V (¢). These are the four
basic sequences plotted on the ordinary chart of stock prices. Note that by
definition the closing price must fall in the interval between the high and low
price for the same interval, p;(t) <p.(t) <pw(t). Hence it follows from definitions
that some events defined for one of these three sequences will not be indepen-
dent of other events defined for the other two.

The events below are defined in such a way as to be easily and unambiguously
recognized on the charts. They are certainly not the only definable events, and
they may not even be the best definitions for the purposes intended. They have
only the merit of simplicity and ease of recognition. Fig. 1 illustrates the events
and the coincidences defined below.

A simple maximum (minimum) occurs in a sequence when a member of the
sequence is greater (less) than the nearest preceding and following member
which is different. Note that price and volume data appear in multiples of %
dollar or one round lot, so that this definition allows several maxima to appear
in sequence without an intervening minimum, and conversely.

A ten per cent S (Superior) event is a simple maximum in the sequence of
highs px(t) for which there were preceding and following trades in the market
for the particular stock considered at ten per cent less than the price at S and
none greater than at S of closer proximity. A ten per cent I (Inferior) event
is similarly defined from minima in the sequence of lows p;(f). The ten per cent
figure is arbitrary; it is simply picked large enough to make the I and S events
sufficiently infrequent. I and S events obviously do not occur independently
of each other. They tend to avoid each other, and to alternate in appearance
for a given stock or average.

An alternative definition of particular S and I events, are the “day away”
events Su;, T4, (reference 3, p. 334). This means, for Sq, that there are nearby
preceding and following days of trading for which the high-low range is “away
from” a closer day’s trading; i.e., the high of one day is less than the low of a
preceding day’s trading nearer to or on the Sy, day, and similarly for some day
preceding the Sg. If two S4, events occur without an intervening I, choose
only the highest of these Sg. If two or more such Sy, events are highest (ex-
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actly equal), choose all. S4, I4, events are even easier to pick out on charts
than per cent S and I events, but occasionally give rise to ambiguities. For
example, on Fig. 1 the price maximum in the third week of May never be-
comes a “day away” maximum. The maximum on June 1 is not identifiable as
a “day away” maximum until about June 17.

It is evident that S and I events of either the percentage or day away type
cannot be immediately identified as such at the end of the day on which they
occurred, but are almost always unambiguously dated for a given span of data.

A volume event is defined as occurring when the volume of any day (week,
month) is larger than the two preceding simple maxima in the volume series.
From this definition, several volume events can occur in immediate sequence,
the last of which will itself be a simple maximum. Generally speaking a volume
event will be a day of relatively large volume. But if there is one volume event
of quite large volume, we can have quite large volumes on succeeding days
without their being defined as volume events. A volume event can be immedi-
ately identified at the end of the day (week, month) of its occurrence.

A lAp‘ event occurs if the change of the closing price, in absolute value,
l Aps(t)| = | po(t) —po(t—1) | , is greater in absolute value than some pre-assigned
minimum, expressed either in dollars or as a percentage. A |Ap| event is
(arbitrarily) dated as of the second day (week, month) of the two closing prices
needed to generate it; i.e., a |Ap| event is considered to occur on a single day.
One can also take account of the sign of Ap and refer to +Ap or —Ap events.

A |A®p| event occurs when the absolute value of the second difference of
closing price, \Apc(t) —-Apc(t—-l)| , exceeds some arbitrary minimum. It is con-
sidered to “occur” on the last two days (weeks, months) of the three consecutive
prices needed to generate a single second difference. We use this double dating
convention since we interpret a l A(2)p| event as an indication of large (sequen-
tial) dispersion [6] in the sequence of numbers Ap(¢), Ap(t+1), ete. lA(”pl is
the range of a sample of two consecutive Ap’s from the population of sequential
Ap’s, and a sample of two is the smallest possible sample which can be used to
estimate dispersion.

A range event R occurs when the difference of the two sequences, pi(t) —pi(t),
on a single day (week, month) is greater than some pre-assigned minimum.

The above six events are defined so that not more than one event of a given
kind occurs* in one basic interval, for one sequence. For any one basic interval
(day, week, month) we can from the data decide unambiguously that an event
of a given type did or did not occur.

It should be noted that of the six events defined above, four of them, V,
| ap|, |A®p|, R can be immediately and unambiguously identified as having
occurred at the end of any given basic interval. Unfortunately this is not true of
the I and S events, though they can be unambiguously identified from a com-
plete sequence of data. I and S events are obviously good points to buy and
sell. Hence, if one can find a statistically significant degree of coincidence be-
tween I and S events and the remaining four, these four events may provide

* This is not strictly correct for lA(l)p| events, since if four or more large Ap events occurred in sequence,
of alternating sign, there would, by our definition be two |A(?)p| events on one day. In practice we have not seen
this happen, although theoretically it could occur.
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some practical trading signals. In the stock market this is called “technical
analysis”.

A second point to observe is that the six types of events can be divided into
three groups, and within each group the events are certainly not independent
of each other. These three groups are:

1. I and 8 events. These two events tend to avoid coincidence both with
themselves and each other, simply from the way they are defined, Thus coinci-
dences of the Type (I(t), S(t)) and delayed coincidences of the Type (I(t—1),
I()), occur less often than if these individual events occurred completely
independently.

2. Volume events V. Volume events do not appear independently of each
other. In fact they tend to cluster, since it is known that volume tends to appear
in bursts sometimes lasting longer than a month [6]. Delayed coincidences of
the type (V(¢—1), V(¢)) probably appear more frequently than if V events
occurred independently of each other.

3. ]Ap| , |A(2)pl and R events also tend to coincide with each other, simply
from the way they are defined. The first two are defined from the closing se-
quence p.(t), the last from the difference ps(t) —p:(¢). The high, low and closing
sequences are connected by the relation p;(f) <p.(t) <pu(f). Hence, large first
or second differences events in p.(t); | Ap|, ]A(Z)p| , and the range event R will
all tend to coincide. Binary coincidences of the type (| Ap(t), ]A(z)p(t) D, (B(@®),
[Ap(t)] ), (R(t), |A®p(#)|) will all tend to occur more frequently than if the
separate events occurred independently (see upper part of Table 1).

What can we say about binary coincidences where the two members are
drawn from different groups above, say an (R(), V() or an (S@), V()
coincidence? Our definitions do not give us any clues here. One might then
reasonably assume independence as a null hypothesis, and then use data to see
if the null hypothesis is rejected. Trading folklore, and different price generating
models do make definite inferences about coincidences of events from these
three different groups, and it is just these inferences we wish to test. In sections
3 through 6 we identify the coincidences to be expected from folklore and price
models, with brief references to the tables where data on these coincidences
appear. In section 7 we examine this data in detail.

3. COINCIDENCES EXPECTED FROM FOLKLORE

Consider the statement “It takes volume to make prices move”. We can
translate this into a statement about coincidences between our events as
follows: “Move” could mean large motion up or down in one day (week,
month), a | Ap| event. “Move” could also mean a violent change of motion on
two successive days, a ]A(”p| event, or violently up and down within a single
day, which would mean an R event. So the statement means there are more
coincidences of the type

V@), | ap®)), VO, | aA®p@)]), V), RE®)

than are giveﬁ by the hypotheses that V events occur independently of |Ap| ,
|A®p| or R events (see lower half of Table I).
A slightly different statement, “It takes volume to put prices up, but they
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can fall of their own weight”, can be translated to imply more coincidences
of the type (V(£),4+Ap(?)) than (V(f),—Ap(t)), the former being more frequent
than if V and 4+Ap events occurred independently. We have not tested for
this item of folklore.

The statement “important moves tend to end on large volume, or climac-
tically” can be translated into statements about coincidences as follows. The
end of an important move is likely to be an I or S events, if the subsequent price
motion is in a direction opposite to the previous motion. It does not have to
be an I or S event if the “subsequent motion” is in the same direction at a
reduced rate, or in fact no motion at all, and the price sits still (in technical
analysis a horizontal “line”). “Large volume” evidently implies a volume
event. “Climactically” could imply violent motion up and down in one or more
successive days, i.e., !Apl , lA‘”pl , or R events. Taken as a whole this state-
ment suggests looking for more frequent occurrence of coincidences of I and S
events (Group 1) with the remaining four (Groups 2 and 3) than would be
given by the null hypothesis that I and S events occurred independently of the
remaining four events (see Table 2).

In our previous paper [1] we argued that “something happening” in the
market implied V, IApi , [A(”p‘ , and R events. If “something happening” also
means an important turning point, or change of sign of the expected value of
Ap, this means an I or S event. This is the same as the conclusion just reached.

Some of the more sophisticated tenets of stock data interpretation seem to
imply that the volume sequence foretells or leads the price sequence [1]. This
statement suggests looking for an excess of delayed coincidences of the form
(V(t—1), 8(@)) and (V(t—1), I(t)), and a deficiency in delayed coincidences of
the form (S(¢—1), V(¢)), and (I(t—1), V(t)), Table 4. The evidence is small but
positive. It may be that different definitions of events and coincidences would
make better tests for these folklore statements,

4. COINCIDENCES EXPECTED FROM THE RANDOM WALK MODEL

Let us now translate some properties of different price models into state-
ments about coincidences. Suppose the sequence of transacted prices in a given
interval, say one day, is a simple coin tossing random walk, with the number
of tosses, or steps proportional to the number of transactions, or volume. We
further suppose that the random walk on each day starts where it ended at the
close of the previous day. From this price model it follows that: (1) IApc(t)l ,
the net distance traversed in the walk from its daily starting point, (the previous
close); (2) \A@)pc(t), a crude measure of the dispersion of the daily sequence
of Ap/’s; and (3) the daily range R(f), all increase with the number of steps, or
volume. In terms of coincidences, this means an increased frequency of coinci-
dences of the type (V (%), R(t)), (V (), |Ap(t)| , and (V (1), IA(2)p(t)|), relative
to their frequency under the null hypotheses that V events occur independently
of R, |Ap[ , and iA(”p(t)l events. In other words, groups 2 and 3 are not inde-
pendent, for the random walk model. Note that this prediction of the random
walk model is qualitatively the same as what we inferred from the folklore
statement that “it takes volume to make prices move”. Whether there is a
quantitative difference, we do not know, though we suspect there is (Section 7).
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The above discussion refers to the relation of big “jumps” (|A(p)|, A®p
events) to volume, for the random walk model. In contrast, the random walk
model, so far as we can see, does not make any predictions as to where maxima
and minima (I and S events) occur; relative to the volume or to |Ap| or
| A®p|. I and S events are defined to be of a magnitude such as 10% of the
price, and hence are relatively infrequent. We surmise using the following
heuristic argument that for this model I and 8 events occur independently of
]Ap[ , IA(2)p| , and R events. For a random walk model, the probability of any
given combination of single steps (including those which give I or S events)
is a constant, independent of what has gone before. If the number of steps
between observations, or volume per day varies, the probability distribution
of Ap,(t) does vary (notably the dispersion) from day to day, but the mean of
the distribution does not. Hence we suspect, but cannot prove, that the appear-
ance by chance of an I or S event in the total sequence is independent of the
occurence of V, |Ap|, |A(2>p] or R events, if the prices are strictly generated
by a random walk. In other words, we conclude group 1 events are independent
of both groups 2 and 3 events, in the random walk model.

5. COINCIDENCES EXPECTED FROM A CONTINUOUS AND CONTINUOUS
DERIVATIVE PRICE SEQUENCE

Let us now suppose a second model, specified as follows. There exists an
unknown mechanism which generates prices which are, for all témes, contin~
uously differentiable functions of that time. The observed, executed transaction
prices are the prices generated by this mechanism, sampled at times correspond-
ing to the executions plus an error term, and rounded off to the nearest 1/8. The
key words are in italics. The actual mechanism is unimportant.

We can illustrate the force of these remarks by an example. Imagine a weight
hung on a spring, and set in vertical oscillation. The height of this weight p(¢)
(cf. price) is for all times after the start a continuous with continuous derivative
function of the time. For such functions the calculus gives as a necessary condi-
tion that the derivative dp/dt is zero at maxima and minima. This suggests
that for observations of p(t) at discrete intervals, with an error, the difference,
Ap.(t) =p.(t) —p.(t—1), and the range R=p({) — p.(f) should be relatively small
at maxima and minima, provided the interval of differencing (i.e. between ob-
servations), a day, week or month, is small compared to the natural dynamical
periods (real or complex) of the mechanism. In terms of our \Apl and R
events, implying large \Apc| and R, these events should avoid coincidence with
I and S events. This conclusion is precisely the opposite of what we concluded
from the statements of folklore.

Concerning second differences of the “observed” prices, we can make no
such general statements. For the particular case of the single mass on the
spring, or simple harmonic motion, the absolute value of the second difference
of p(?), \A(”p(t)l is in fact largest at the maxima and minima, but this is not
true of all physical systems in general.

In summary therefore, for a price model in which the underlying mechanism
gives prices which are at all times continuous with continuous derivative func-
tions of the time, with dynamical periods or “proper values” longer than the
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interval of observation (day, week or month), I and S events will avoid coinci-
dence with |Ap| and R events. There is no indication, from our arguments as
to where lA(z)p and volume events will occur, so for this model we assume
these occur independently of I and S.

It should also be noted that the continuous and analytic model assumes ob-
servations at intervals (day, week, month) smaller than the natural dynamical
“periods” of the underlying mechanism. If these day, week or month intervals
are larger rather than smaller, one could well have the observations fitting a
random walk model. “Large”, rather than “small” is precisely the condition
under which Einstein originally derived the properties of Brownian motion
from the continuous motion of small dust particles in collision with molecules.

6. COINCIDENCES EXPECTED FROM THE DISCRETE TRANSIENT MODEL

The third model is the one we have already proposed [7]. The price sequence
is a set of transients of the form A4e* for ¢ taking on discrete values only, the
transients being initiated by large volume. For this model, as we indicated in
our previous paper (see Fig. 3, ref. 7), we expect more coincidences, relative to
the hypotheses of independence, of I and S events with |Ap|, \A(ﬁ)p|, R, V,
i.e., just the coincidences implied by the folklore statement concerning the end
of “important moves” (Section 3 and Table 2). This third model also implies
excess binary coincidences among V, |Ap|, |A®p| and R. In this respect its
predictions are qualitatively the same as for the random walk model, and also
with the folklore statement that it takes volume to make prices move (Section ¥
and lower half of Table 1).

The above three models do not of course exhaust the possibilities. In par-
ticular it should be noted that if the specifications on the continuous model
were relaxed from “at all times”, to “at all times except a discrete number of
points,” and these discontinuities of function or derivative were marked by
large volume, the resulting conclusions could be quite similar to those which
we reached for our discrete transient model. The discrete transient model was
built around the concept of a totally discontinuous process. The prices did not
‘exist except at discrete instants of time [7].

7. COMPARISON OF THEORY AND OBSERVATION

Let us now examine some data to see in what respects the conclusions from
theory we have drawn in the preceding discussion are supported by the evi-
dence. The five sequences considered, and the criteria defining the events, are
given at the top of Table 1. They were selected as follows: the first four se-
quences were picked out of the supply of semi-log charts (linear charts for
Daily DJI), available to the author, primarily so as to have an appreciable
number of I and S events on them. The existence of sufficient 7 and S events
was needed to test adequately for their coincidence or avoidance of the other
events. Stocks which traded in low volume and price were also avoided. Beyond
these two specifications no attempt was made to pick favorable or unfavorable
cases. This selection introduces some bias into our sample, since this choice
means we have picked sequences, or time intervals, in which the stocks really
“moved”.
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The fifth sequence (DJI Weekly, using DJI volume) was chosen to check
on some rather unexpected results which appeared in the DJI daily data, using
total market volumes.

The identifications of the events |Ap| , |A<2)p| , B were simply made with a
ruler on the semi-log charts. In the case of the monthly charts (Col. 4) this
accounts for the apparently unsymmetrical specification of S vs I events. For
an S event, a 209 fall (4/5 p) is equal in “distance” to a 25%, rise (5/4 p) on a
semi-log chart.

The first three binary coincidences in Table 1 simply check what we expected
from the definitions; [Apl , |A<2)p| and I events do not occur independently.
The observed number of coincidences, N is systematically greater than
N theor calculated under the assumption of independence. In most cases the excess
is significant at the 59, level, denoted by (*). Summaries by sequence appear in
the lower row, and by event in the last columns.

It will be noted that the significance probabilities for the summary rows and
columns are computed using the fact that the sum of Poisson variables is a
Poisson variable. Use of this fact requires the assumption that the individual
Poisson variables summed are independent. This seems to be a reasonable
assumption for the sum of events for a coincidence type (the last column) and
debatable for the sum of all events for a sequence (the summary row). Obvi-
ously the numbers in one sequence of |Ap| , |A<2>p| , and R events are not in-
dependent. If and how much this error makes the significance for the sum of
events for a sequence overstated (too small a value of P(n>Noy), we do
not know.

The second group of binary events in Table 1 check for coincidences of V'
Withl Apl , IA“-’)pI, and R events (groups 2 and 3). An excess is expected by
both the random walk model, the discrete transient model, and folklore (“vol-
ume make prices move”). In general there is a significant excess of the observed
number of coincidences, Nons, 0Ver Nineor. S0 we conclude that a “mix” in
unknown proportions of these two models, plus folklore, is probably correct.
This is certainly not a startling conclusion.

However, detailed examination of this second group of binary coincidences
in Table 1 shows two rather unexpected results. Column 2 represents the daily
data for the Dow Jones Industrial Average and the total market volume. These
two sequences are more closely studied by the trading public than any other.
For this wellspring of folklore, for none of the coincidences, either individually
or in toto (8 observed vs 6.4 theoretical) is there a significant excess of coin-
cidences.

We believe that this negative result can be explained in part by the following
arguvment. The events in the Dow Jones Average were being compared with
events in the total market volume sequence, and strictly speaking one should
rather have used just the volume associated with the stocks in the average.
This is about 79, of the total market volume.

There is in fact a certain amount of “correlation”, or excess of coincidences
between events in the Dow Jones Volume and total market volume, as is shown
in Table 5. Nevertheless it would be preferable to compare the DJI with just
the volume associated with the stocks in it. This comparison is made in column
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TABLE 3. TRIPLE COINCIDENCES INVOLVING I AND 8S.
COMPUTED AS COMPOUND BINARY EVENTS (EQ. 2)

Coincident Event

Sum over Sequences (1) through (4)

Nobs Ntheor P(?’L > Nobs)

(8, (|ap|, | a®p|)) 2 0.97 0.26
(8, (|ap}, R)) 1 0.98 0.63
(8, (|a2p|, R)) 2 1.00 0.27
(8, ({ap|, V) 0 0.73 1.0

(S, (|a@p|, 7)) 0 0.8 1.0

8, (B, V) 0 1.14 1.0
Sum 5 5.38 0.57
Sequence Sum over 6 triple coincidences involving S
(1) Magnavox, daily 5 1.56 0.02*
(2) DJI Daily, Mkt., Vol. 0 .75 1.0

(3) United Airlines, weekly 0 2.29 1.0

(4) Johns Manville, monthly 0 0.80 1.0
Sum 5 5.38 0.57

Coincident Event

Sum over sequences (1)—(4)

Nobs Ntheor P(n Z Nobs)

(I, (|an|, |a®p|) 2 1.05 0.27
I, ({ap|, B) 3 1.09 0.10
d, (|a®pl, R)) 8 1.11 <0.01*
a, (|ap|, ) 2 0.79 0.2

a, (|a®p|, v)) 3 0.65 0.03*
(, (R, V) 7 1.26 <0.01*
Sum 30 11.33 <0.01*
Sequence Sum over 6 triple coincidences involving I
(1) Magnavox, daily 13 1.79 <0.01*
(2) DJI Daily, Market Vol. 5 0.73 <0.01*
(3) United Airlines, weekly 6 2.64 0.04*
(4) Johns Manville, monthly 1 0.97 0.63
Sum 30 11.33 <0.01*

5, using weekly data. It will be observed that in general, i.e., for the summary
data for this sequence, (Nos=19 vS. Nineor="0.9) there is a significant excess,
in agreement with what was concluded from the other sequences. But in par-
ticular there is not a significant excess of (|A®@p|, V) coincidences (N ops=4 Vs.
Nibeor=2.7). This brings us to the second unexpected result in Table 1.
According to the random walk model, the volume and the sequential disper-
sion (measured by |A®p|) should increase together. This implies an excess
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number of (fA‘Z)p|, V) coincidences. The row of data in summary for this
event in Table 1 (Nops=19 vS. Nipeor=13.9) does not quite significantly sup-
port this conclusion (P=0.09). This is a slightly embarrassing result, since in
addition to the random walk model it also contradicts the predictions of the
discrete transient model, and also folklore. The one exception to this embarrass-
ment is in the first column, for an individual stock for data at daily intervals
(Nobs =8 vs. Ntheor = 31)

From this limited data we can guess that folklore and the discrete transient
model may be correct for daily data on individual stocks in predicting excess
(I A(z)pl , V) coincidences, but not for longer basic intervals (week, month), or
for an average. A better test would be to generate a synthetic random walk
with variable numbers of steps (volume) between observations, and then test
these data for (I A®p ], V') coincidences. We can guess at this stage that the
excess of ( | A(Z’pl , V) coincidences which do occur in daily data for individual
stocks are primarily due to non-random structure (folklore and the discrete
transient model), and that the random walk contribution to (] A<2>p[ , V) coin-
cidences is rather small.

Let us now consider the binary coincidences involving I and S with the re-
maining four events (Table 2). An excess of these eight different types of coinci-
dences (four with I and four witb S) is predicted both by the discrete transient
model, and also by the folklore statement, “Important moves end climatically,
or on large volume”.

First observe the summary figures of I and S separately. For the coincidences
with S events the totals are Nops=22 vs. Nineor=15.7, and an excess not quite
significant at the 5% level (P(Nobs > 22| Nineor = 15.7) = 0.07. Most of the excess
is provided by the individual stock at daily intervals (Nobs =8 V8. Nineor = 2.78),
and none of the others show a significant excess of coincidences of S with the
other four events. So far as these data are concerned, we can say that the
conclusion of folklore that “important moves upward (S events) end on large
volume or climactically”, applies to individual stocks and daily data (one ex-
ample only), not to longer intervals, or an average.

The case for minima, or I events, is somewhat more convincing, since the
difference of the totals, Nobs=50 vs. Nineor=16.98 is highly significant. The
individual cases also separately show a significant excess of coincidences of I
events with the remaining four, except for the monthly interval data (Nop=4
VS. Nineor=2.96), and except for (I, pr]) coincidences, where the excess of
coincidences is also not significant (Nobs =25 vS. Nineor =2.54).

In summary, therefore, the conclusions of folklore and the discrete transient
model hold better at minima than maxima, better in individual stocks than an
average, and better for intervals of a day or week, than for intervals of a month.

The asymmetry between the behavior at maxima and minima is at least in
agreement with one item of folklore. Traditionally stocks tend to rally some-
what abruptly from a decline, whereas the passage through a peak is somewhat
more leisurely. The above conclusions are in agreement with this statement.
The same statement can be made in a variety of ways. One might say “stocks
bounce something like a pingpong ball, with discontinuities at the minima of
its trajectories”. In market terms one can say that bargain hunting is more
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concentrated in time and price than profit taking., This statement is in agree-
ment with the inference that limit orders to buy below the market are more
concentrated in price than limit orders to sell above the market (ref. 6, p. 377).

There are four binary events marked with a dagger in Table 2. These are
the coincidences which are expected to ocour less rather than more frequently
that given by independence, if a continuous in time price mechanism were
correct. Examination of the data for these coincidences gives no support to
such a mechanism, but merely supports our previous conclusions. Comparing
Novs V8. Nineor, there is a neglibible departure (an excess) for coincidences with
S events, and a considerable excess, rather than deficiency for coincidence
with the I events.

There are twelve possible triple coincidences involving I and S, which might
be examined, six with I and six with S. These twelve (Table 3) are formed by
combining I or S with the six binary coincidences listed in Table 1. For prac-
tically all of these twelve the calculated number of coincidences (using the
form of Eq. 2) was considerably less than one. The observed number was zero
for the majority of individual sequences, in the case of coincidences with S
events, and only one or two in the case of coincidences with I events. Hence we
give only the summary figures for these triple coincidences. Our previous con-~
clusions from the binary coincidences are confirmed. Except for the individual
stock at daily intervals (Nops =5 vS. Nineor = 1.6), there is no significant excess
for S events but there is for I events, except for intervals of one month.

It should be pointed out here that Nineo: for the triple coincidences in Table
3 are computed as though they were binary coincidences, of one single event
with another single event (which happens to be binary). This method of calcu-
lation is indicated by the notation in Table 3, for example (I(2), (R(t), | Apt|)),
rather than (I(¢), B(), |Ap (®)]) for the triple coincidence between I, R, and
| Ap| events. The reason follows from the discussion of the three groups of our
six events in section 2.

It is known, or suspected, that B and ]Ap| events are not independent
simply from their definitions, Thus, the expected, or theoretical number of
triple coincidences as computed in Table 3, is

Nobs(I)Nobs(R7 Ap) T

Ntheor = T2 (2)
Specifically we do not use
No 8 I No 8 R No s A T
N = be (1) Nabs () Novs( | Ap | ) 3

T3

which would be the expected number of triple coincidences if all three of the
events I, R, | Ap| were assumed under the null hypothesis to be tested, to be
independent of each other.

In Table 4 are given the data for a test for delayed coincidences of volume
events with I and S events. The effects are small, but the summary column at
the left does give definite evidence that volume events tend to precede I and S
events (primarily S events) and avoid following I and S events by one unit of
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TABLE 5. DATA ON COINCIDENCES BETWEEN TOTAL MARKET VOLUME
AND VOLUME FOR DOW-JONES INDUSTRIAL COMPONENTS ONLY.
WEEKLY DATA FROM JULY 1956 TO OCTOBER 1959, TAKEN
GRAPHICALLY FROM CHARTS OF SECURITIES RESEARCH
CORPORATION, BOSTON, MASS.

No. of intervals 172
No. of total market volume events Vi 33
No. of D. J. volume events Vps 23
Expected no. of (Vx(t), Vps(t)) coincidences
33.23
Ntheor = = 4.4
172
Observed no. of (Vy(t), Vps(t)) coincidences, Nobs = 14
P(n>Nobs)<0.01

time. The former is expressed by an excess of coincidences, the latter by a
deficiency. Note that for the latter case the significance probability is for fewer
than the observed number of coincidences, rather than for an excess, as in
Tables 1 and 2. The slight evidence that volume events tend to precede and
avoid following I and S events is an imperfect expression of the complicated
anii esoteric rules for volume trading signals (cf. “head and shoulders” pattern
).

Table 5 has already been referred to as showing a certain ‘“correlation’” (as
measured by excess coincidence of volumes events) between the Dow Jones
Industrial volume and the total market volume. This excess expresses a prop-
erty of these two volume sequences which is quite analogous to the relation
between a single stock sequence and a market average, or between two stock
sequences in the same industry, say railroads or steels. In other words, these
two volume sequences contain a random variable in common. The relation
between correlation due to a common random variable, and excess coincidence
of events due to a common random variable, would be an interesting question
to explore.

DISCUSSION AND SUMMARY

The methods of this paper were devised, and the data assembled for the
explicit purpose of testing for the correctness of the discrete transient method.
In so doing we also tested for the random walk model. The discrete transient
model was confirmed for price minima, poorly or not at all for price maxima.
The volume sequence tended slightly to lead, and avoid lag in the sense of
coincidences, the price sequence, but in a slightly asymmetric way. In general
shorter time interval data (daily, weekly) tended to show more “non-random
walk” properties than for longer intervals (monthly). The most puzzling con-
clusion from the data is the failure to find, except for daily data on a single
stock, and excess of (] A(”pl, V) coincidences. This is more puzzling because
an excess is predicted by the random walk model, the discrete transient model,
and folklore.

In view of the imperfect agreement between theory and observation, both for
random walk and discrete transient model, at the moment we can only suggest
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what further investigations might be undertaken to clarify these matters.
Prime targets for further examination are the daily sequences on individual
stocks, since our single example of this showed the most “non-random” struc-
ture.

It would also be helpful if some synthetic random walks were constructed in
which the volume (number of steps per day) were varied according to either a
lognormal or Pareto-Levy distribution [3]. and these synthetic sequences
examined by the method of coincident events. Such a test would be helpful in
showing what can be expected from such a “extended” random walk model,
with variable number of steps between observations. All of this could be much
better done by machine than by graphical methods, which the author finds
exceedingly tedious. A computer could be readily programmed to: (a) analyze
a real price and volume sequence, and (b) at the same time generate and analyze
a random walk with the number of steps each day exactly equal, or proportional
to the real volume sequence. The difference in the statistical properties of the
synthetic vs. real price and volume sequences would be a good test of the non-
random walk properties actually present.

APPENDIX I

The Exact and Poisson Approximation for the Occurrence of k¥ Coincidences
in T Intervals

Let us assume that nz events R, and ny events V occur independently of
each other and the calendar date (assumptions 1-4) in a span of T days, one
or none of either type of event per day. The total number of ways this may
occur is

T! T!

. A-1
nv'(T - nv)! nR'(T - nR)’

Out of this total number of ways, exactly k pairs, or (R(t), V(¢)) coincidences
can occur in

T!
(ng — k)ny — B)IENT — (ng + nv — k))!

A-2

different ways. The ratio of Equation A-2 to A-1 is then the probability P (k)
of exactly k comncidences. Rearranged, this ratio is

k) = [(T — (ng i!nv — k) !] [ (anf!k)!:![ (nVn_V k) !]

. [(T ;!nv) !J[(T ;!nn)]ki! A3

This is the hypergeometric distribution (Ref. 8, p. 42, with n=T, ni=ne,
r=ny)
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We repeatedly apply to the bracketed factors in A-3 the general formula

7! . =1
(—77:7)—! = T exp( ?;:1 log. (1 — s/T)) A4
Expand the logarithm and obtain, for 7 smaller than /T,
—Lb’_— Tiexp(—72/2T + 7/2T) A-5
(T = !
Use A-5 to express each bracket in A-3, and we ultimately find approximately
P(k) = (ng-nv/T) (1/k!) exp(—ngny/T) A-6

an approximation good if k, ng, ny, are smaller than +/7. Equation A-6 is just
the Poisson approximation to the hypergeometric distribution we have used.
(Ref. 8, p. 162)
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