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0. Introduction.
In this course we will study mathematical finance. Mathematical finance is not

about predicting the price of a stock. What it is about is figuring out the price of options
and derivatives.

The most familiar type of option is the option to buy a stock at a given price at
a given time. For example, suppose Microsoft is currently selling today at $40 per share.
A European call option is something I can buy that gives me the right to buy a share of
Microsoft at some future date. To make up an example, suppose I have an option that
allows me to buy a share of Microsoft for $50 in three months time, but does not compel
me to do so. If Microsoft happens to be selling at $45 in three months time, the option is
worthless. I would be silly to buy a share for $50 when I could call my broker and buy it
for $45. So I would choose not to exercise the option. On the other hand, if Microsoft is
selling for $60 three months from now, the option would be quite valuable. I could exercise
the option and buy a share for $50. I could then turn around and sell the share on the
open market for $60 and make a profit of $10 per share. Therefore this stock option I
possess has some value. There is some chance it is worthless and some chance that it will
lead me to a profit. The basic question is: how much is the option worth today?

The huge impetus in financial derivatives was the seminal paper of Black and Scholes
in 1973. Although many researchers had studied this question, Black and Scholes gave a
definitive answer, and a great deal of research has been done since. These are not just
academic questions; today the market in financial derivatives is larger than the market
in stock securities. In other words, more money is invested in options on stocks than in
stocks themselves.

Options have been around for a long time. The earliest ones were used by manu-
facturers and food producers to hedge their risk. A farmer might agree to sell a bushel of
wheat at a fixed price six months from now rather than take a chance on the vagaries of
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market prices. Similarly a steel refinery might want to lock in the price of iron ore at a
fixed price.

The sections of these notes can be grouped into 5 categories. The first is elementary
probability. Although someone who has had a course in undergraduate probability will
be familiar with some of this, we will talk about a number of topics that are not usually
covered in such a course: σ-fields, conditional expectations, martingales. The second
category is the binomial asset pricing model. This is just about the simplest model of
a stock that one can imagine, and this will provide a case where we can see most of
the major ideas of mathematical finance, but in a very simple setting. Then we will
turn to advanced probability, that is, ideas such as Brownian motion, stochastic integrals,
stochastic differential equations, Girsanov tranformation. Although to do this rigorously
requires measure theory, we can still learn enough to understand and work with these
concepts. We then return to finance and work with the continuous model. We will derive
the Black-Scholes formula, see the Fundamental Theorem of Asset Pricing, work with
equivalent martingale measures, and the like. The fifth main category is term structure
models, which means models of interest rate behavior.

1. Review of elementary probability.

Let’s begin by recalling some of the definitions and basic concepts of elementary
probability. We will only work with discrete models at first.

We start with an arbitrary set, called the probability space, which we will denote
by Ω, the Greek letter “capital omega.” We are given a class F of subsets of Ω. These are
called events. We require F to be a σ-field. This means that

(1) ∅ ∈ F ,
(2) Ω ∈ F ,
(3) A ∈ F implies Ac ∈ F , and
(4) A1, A2, . . . ∈ F implies both ∪∞i=1Ai ∈ F and ∩∞i=1Ai ∈ F .

Here Ac = {ω ∈ Ω : ω /∈ A} denotes the complement of A. ∅ denotes the empty set, that
is, the set with no elements. We will use without special comment the usual notations of
∪ (union), ∩ (intersection), ⊂ (contained in), ∈ (is an element of).

Typically, in an elementary probability course, F will consist of all subsets of
Ω, but we will later need to distinguish between various σ-fields. Here is an exam-
ple. Suppose one tosses a coin two times and lets Ω denote all possible outcomes. So
Ω = {HH, HT, TH, TT}. A typical σ-field F would be the one consisting of all subsets (of
which there are 16). In this case it is trivial to show that F is a σ-field, since every subset
is in F . But if we let G = {∅,Ω, {HH, HT}, {TH, TT}}, then G is also a σ-field. One has
to check the definition, but to illustrate, the event {HH, HT} is in G, so we require the
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complement of that set to be in G as well. But the complement is {TH, TT} and that
event is indeed in G.

One point of view which we will explore much more fully later on is that the σ-
field tells you what events you know. In this example, F is the σ-field where you “know”
everything, while G is the σ-field where you “know” only the result of the first toss but not
the second. We won’t try to be precise here, but to try to add to the intuition, suppose
one knows whether an event in F has happened or not for a particular outcome. We
would then know which of the events {HH}, {HT}, {TH}, or {TT} has happened and so
would know what the two tosses of the coin showed. On the other hand, if we know which
events in G happened, we would only know whether the event {HH, HT} happened, which
means we would know that the first toss was a heads, or we would know whether the event
{TH, TT} happened, in which case we would know that the first toss was a tails. But
there is no way to tell what happened on the second toss from knowing which events in G
happened. Much more on this later.

The third basic ingredient is a function P on F satisfying
(1) if A ∈ F , then 0 ≤ P(A) ≤ 1,
(2) P(Ω) = 1, and
(3) if A1, A2, . . . ∈ F are pairwise disjoint, then P(∪∞i=1Ai) =

∑∞
i=1 P(Ai).

P is called a probability or probability measure.
There are a number of conclusions one can draw from this definition. As one

example, if A ⊂ B, then P(A) ≤ P(B) and P(Ac) = 1− P(A).
Someone who has had real analysis will realize that a σ-field is the same thing as a

σ-algebra and a probability is a measure of total mass one.

A random variable (abbreviated r.v.) is a function X from Ω to R, the reals. To
be more precise, to be a r.v. X must also be measurable, which means that {ω : X(ω) ≥
a} ∈ F for all reals a.

The notion of measurability has a simple definition but is a bit subtle. If we take
the point of view that we know all the events in G, then if Y is G-measurable, then we
know Y .

Here is an example. In the example where we tossed a coin two times, let X be the
number of heads in the two tosses. Then X is F measurable but not G measurable. To
see this, let us consider Aa = {ω ∈ Ω : X(ω) ≥ a}. This event will equal

Ω if a ≤ 0;
{HH, HT, TH} if 0 < a ≤ 1;
{HH} if 1 < a ≤ 2;
∅ if 2 < a.

For example, if a = 3
2 , then the event where the number of heads is 3

2 or greater is the
event where we had two heads, namely, {HH}. Now observe that for each a the event Aa
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is in F because F contains all subsets of Ω. Therefore X is measurable with respect to
F . However it is not true that Aa is in G for every value of a – take a = 3

2 as just one
example. So X is not measurable with respect to the σ-field G.

A discrete r.v. is one where P(ω : X(ω) = a) = 0 for all but countably many a’s.
In defining sets one usually omits the ω; thus (X = x) is the same as {ω : X(ω) = x}.

In the discrete case, to check measurability with respect to a σ-field F , it is enough
that (X = a) ∈ F for all reals a. The reason for this is if x1, x2, . . . are the values of x

for which P(X = x) 6= 0, then we can write (X ≥ a) = ∪xi≥a(X = xi) and we have a
countable union. So if (X = xi) ∈ F , then (X ≥ a) ∈ F .

Given a discrete r.v. X, the expectation or mean is defined by

E X =
∑

x

xP(X = x)

provided the sum converges. If X only takes finitely many values, then this is a finite sum
and of course it will converge. This is the situation that we will consider for quite some
time. However, if X can take an infinite number of values (but countable), convergence
needs to be checked.

There is an alternate definition of expectation which is equivalent in the discrete
setting. Set

E X =
∑
ω∈Ω

X(ω)P({ω}).

To see that this is the same, we have∑
x

xP(X = x) =
∑

x

x
∑

{ω∈Ω:X(ω)=x}

P({ω})

=
∑

x

∑
{ω∈Ω:X(ω)=x}

X(ω)P({ω})

=
∑
ω∈Ω

X(ω)P({ω}).

The advantage of the second definition is that some properties of expectation, such as
E (X + Y ) = E X + E Y , are immediate, while with the first definition they require quite
a bit of proof.

Two events A and B are independent if P(A ∩ B) = P(A)P(B). Two random
variables X and Y are independent if P(X ∈ A, Y ∈ B) = P(X ∈ A)P(X ∈ B) for all
A and B that are subsets of the reals. The comma in the expression on the left hand
side means “and.” The extension of this definition to the case of more than two events or
random variables is obvious.

4



Two σ-fields F and G are independent if A and B are independent whenever A ∈ F
and B ∈ G. A r.v. X and a σ-field G are independent if P((X ∈ A)∩B) = P(X ∈ A)P(B)
whenever A is a subset of the reals and B ∈ G.

As an example, suppose we toss a coin two times and we define the σ-fields G1 =
{∅,Ω, {HH, HT}, {TH, TT}} and G2 = {∅,Ω, {HH, TH}, {HT, TT}}. Then G1 and G2 are
independent if P(HH) = P(HT ) = P(TH) = P(TT ) = 1

4 . (Here we are writing P(HH)
when a more accurate way would be to write P({HH}).) An easy way to understand this
is that if we look at an event in G1 that is not ∅ or Ω, then that is the event that the first
toss is a heads or it is the event that the first toss is a tails. Similarly, a set other than ∅
or Ω in G2 will be the event that the second toss is a heads or that the second toss is a
tails.

If two r.v.s X and Y are independent, we have the multiplication theorem, which
says that E (XY ) = (E X)(E Y ) provided all the expectations are finite.

Suppose X1, . . . , Xn are n independent r.v.s, such that for each one P(Xi = 1) = p,
P(Xi = 0) = 1 − p, where p ∈ [0, 1]. The random variable Sn =

∑n
i=1 Xi is called a

binomial r.v., and represents, for example, the number of successes in n trials, where the
probability of a success is p. An important result in probability is that

P(Sn = k) =
n!

k!(n− k)!
pk(1− p)n−k.

We close this section with a definition of conditional probability. The probability
of A given B, written P(A | B) is defined by

P(A ∩B)
P(B)

,

provided P(B) 6= 0. The conditional expectation of X given B is defined to be

E [X;B]
P(B)

,

provided P(B) 6= 0. The notation E [X;B] means E [X1B ], where 1B(ω) is 1 if ω ∈ B and
0 otherwise. Another way of writing E [X;B] is

E [X;B] =
∑
ω∈B

X(ω)P({ω}).

2. Conditional expectation.
Suppose we have 200 men and 100 women, 70 of the men are smokers, and 50 of

the women are smokers. If a person is chosen at random, then the conditional probability
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that the person is a smoker given that it is a man is 70 divided by 200, or 35%, while the
conditional probability the person is a smoker given that it is a women is 50 divided by
100, or 50%. We will want to be able to encompass both facts in a single entity.

The way to do that is to make conditional probability a random variable rather
than a number. To reiterate, we will make conditional probabilities random. Let M,W be
man, woman, respectively, and S, Sc smoker and nonsmoker, respectively. We have

P(S | M) = .35, P(S | W ) = .50.

We introduce the random variable

(.35)1M + (.50)1W

and use that for our conditional probability. So on the set M its value is .35 and on the
set W its value is .50.

We need to give this random variable a name, so what we do is let G be the σ-field
consisting of {∅,Ω,M,W} and denote this random variable P(S | G). Thus we are going
to talk about the conditional probability of an event given a σ-field.

What is the precise definition? Suppose there exist finitely (or countably) many sets
B1, B2, . . ., all having positive probability, such that they are pairwise disjoint, Ω is equal
to their union, and G is the σ-field one obtains by taking all finite or countable unions of
the Bi. Then the conditional probability of A given G is

P(A | G) =
∑

i

P(A ∩Bi)
P(Bi)

1Bi
(ω).

In short, on the set Bi the conditional probability is equal to P(A | Bi).
Not every σ-field can be so represented, so this definition will need to be extended

when we get to continuous models. σ-fields that can be represented in this way are called
finitely (or countably) generated and are said to be generated by the sets B1, B2, . . ..

Let’s look at another example. Suppose Ω consists of the possible results when we
toss a coin three times: HHH, HHT, etc. Let F3 denote all subsets of Ω. Let F1 consist of
the sets ∅,Ω, {HHH,HHT,HTH,HTT}, and {THH,THT, TTH, TTT}. So F1 consists
of those events that can be determined by knowing the result of the first toss. We want to
let F2 denote those events that can be determined by knowing the first two tosses. This will
include the sets ∅,Ω, {HHH,HHT}, {HTH,HTT}, {THH,THT}, {TTH, TTT}. This is
not enough to make F2 a σ-field, so we add to F2 all sets that can be obtained by taking
unions of these sets.

Suppose we tossed the coin independently and suppose that it was fair. Let us
calculate P(A | F1), P(A | F2), and P(A | F3) when A is the event {HHH}. First
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the conditional probability given F1. Let C1 = {HHH,HHT,HTH,HTT} and C2 =
{THH,THT, TTH, TTT}. On the set C1 the conditional probability is P(A∩C1)/P(C1) =
P(HHH)/P(C1) = 1

8/ 1
2 = 1

4 . On the set C2 the conditional probability is P(A∩C2)/P(C2)
= P(∅)/P(C2) = 0. Therefore P(A | F1) = (.25)1C1 . This is plausible – the probability of
getting three heads given the first toss is 1

4 if the first toss is a heads and 0 otherwise.
Next let us calculate P(A | F2). Let D1 = {HHH,HHT}, D2 = {HTH,HTT}, D3

= {THH,THT}, D4 = {TTH, TTT}. So F2 is the σ-field consisting of all possible unions
of some of the Di’s. P(A | D1) = P(HHH)/P(D1) = 1

8/ 1
4 = 1

2 . Also, as above, P(A |
Di) = 0 for i = 2, 3, 4. So P(A | F2) = (.50)1D1 . This is again plausible – the probability
of getting three heads given the first two tosses is 1

2 if the first two tosses were heads and
0 otherwise.

What about conditional expectation? Given a random variable X, we define

E [X | G] =
∑

i

E [X;Bi]
P(Bi)

1Bi
.

This is the obvious definition, and it agrees with what we had before because E [1A | G] =
P(A | G).

We now turn to some properties of conditional expectation. Some of the following
propositions may seem a bit technical. In fact, they are! However, these properties are
crucial to what follows and there is no choice but to master them.

Proposition 2.1. E [X | G] is G measurable, that is, if Y = E [X | G], then (Y > a) is a

set in G for each real a.

Proof. By the definition,

Y = E [X | G] =
∑

i

E [X;Bi]
P(Bi)

1Bi
=

∑
i

bi1Bi

if we set bi = E [X;Bi]/P(Bi). The set (Y ≥ a) is a union of some of the Bi, namely, those
Bi for which bi ≥ a. But the union of any collection of the Bi is in G.

An example might help. Suppose

Y = 2 · 1B1 + 3 · 1B2 + 6 · 1B3 + 4 · 1B4

and a = 3.5. Then (Y ≥ a) = B3 ∪B4, which is in G.
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Proposition 2.2. If C ∈ G and Y = E [X | G], then E [Y ;C] = E [X;C].

Proof. Since Y =
∑ E [X;Bi]

P(Bi)
1Bi and the Bi are disjoint, then

E [Y ;Bj ] =
E [X;Bj ]

P(Bj)
E 1Bj

= E [X;Bj ].

Now if C = Bj1 ∪ · · · ∪Bjn
∪ · · ·, summing the above over the jk gives E [Y ;C] = E [X;C].

Let us look at the above example for this proposition, and let us do the case where
C = B2. Note 1B21B2 = 1B2 because the product is 1 · 1 = 1 if ω is in B2 and 0 otherwise.
On the other hand, it is not possible for an ω to be in more than one of the Bi, so
1B21Bi = 0 if i 6= 2. Mutiplying Y in the above example by 1B2 , we see that

E [Y ;C] = E [Y ;B2] = E [Y 1B2 ] = E [3 · 1B2 ]

= 3E [1B2 ] = 3P(B2).
However the number 3 is not just any number; it is E [X;B2]/P(B2). So

3P(B2) =
E [X;B2]

P(B2)
P(B2) = E [X;B2] = E [X;C],

just as we wanted. If C = B1 ∪B4, for example, we then write
E [X;C] = E [X1C ] = E [X(1B2 + 1B4)]

= E [X1B2 ] + E [X1B4 ] = E [X;B2] + E [X;B4].
By the first part, this equals E [Y ;B2]+E [Y ;B4], and we undo the above string of equalities
but with Y instead of X to see that this is E [Y ;C].

If a r.v. Y is G measurable, then for any a we have (Y = a) ∈ G which means that
(Y = a) is the union of one of more of the Bi. Since the Bi are disjoint, it follows that Y

must be constant on each Bi.
Again let us look at an example. Suppose Z takes only the values 1, 3, 4, 7. Let

D1 = (Z = 1), D2 = (Z = 3), D3 = (Z = 4), D4 = (Z = 7). Note that we can write

Z = 1 · 1D1 + 3 · 1D2 + 4 · 1D3 + 7 · 1D4 .

To see this, if ω ∈ D2, for example, the right hand side will be 0+3 ·1+0+0, which agrees
with Z(ω). Now if Z is G measurable, then (Z ≥ a) ∈ G for each a. Take a = 7, and we
see D4 ∈ G. Take a = 4 and we see D3 ∪D4 ∈ G. Taking a = 3 shows D2 ∪D3 ∪D4 ∈ G.
Now D3 = (D3 ∪D4)∩Dc

4, so since G is a σ-field, D3 ∈ G. Similarly D2, D1 ∈ G. Because
sets in G are unions of the Bi’s, we must have Z constant on the Bi’s. For example, if it
so happened that D1 = B1, D2 = B2 ∪B4, D3 = B3 ∪B6 ∪B7, and D4 = B5, then

Z = 1 · 1B1 + 3 · 1B2 + 4 · 1B3 + 3 · 1B4 + 7 · 1B5 + +4 · 1B6 + 4 · 1B7 .

We still restrict ourselves to the discrete case. In this context, the properties given
in Propositions 2.1 and 2.2 uniquely determine E [X | G].

8



Proposition 2.3. Suppose Z is G measurable and E [Z;C] = E [X;C] whenever C ∈ G.

Then Z = E [X | G].

Proof. Since Z is G measurable, then Z must be constant on each Bi. Let the value of Z

on Bi be zi. So Z =
∑

i zi1Bi . Then

ziP(Bi) = E [Z;Bi] = E [X;Bi],

or zi = E [X;Bi]/P(Bi) as required.

The following propositions contain the main facts about this new definition of con-
ditional expectation that we will need.

Proposition 2.4. (1) If X1 ≥ X2, then E [X1 | G] ≥ E [X2 | G].
(2) E [aX1 + bX2 | G] = aE [X1 | G] + bE [X2 | G].
(3) If X is G measurable, then E [X | G] = X.

(4) E [E [X | G]] = E X.

(5) If X is independent of G, then E [X | G] = E X.

If we were to think of E [X | G] as the best prediction of X given G, we can give an
interpretation of (1)-(5). (1) says that if X1 is larger than X2, then the predicted value of
X1 should be larger than the predicted value of X2. (2) says that the predicted value of
X1 + X2 should be the sum of the predicted values. (3) says that if we know G and X is
G measurable, then we know X and our best prediction of X is X itself. (4) says that the
average of the predicted value of X should be the predicted value of X. (5) says that if
knowing G gives us no additional information on X, then the best prediction for the value
of X is just E X.

Proof. (1) and (2) are immediate from the definition. To prove (3), note that if Z =
X, then Z is G measurable and E [X;C] = E [Z;C] for any C ∈ G; this is trivial. By
Proposition 2.3 it follows that Z = E [X | G]; this proves (3). To prove (4), if we let C = Ω
and Y = E [X | G], then E Y = E [Y ;C] = E [X;C] = E X.

Last is (5). Let Z = E X. Z is constant, so clearly G measurable. By the in-
dependence, if C ∈ G, then E [X;C] = E [X1C ] = (E X)(E 1C) = (E X)(P(C)). But
E [Z;C] = (E X)(P(C)) since Z is constant. By Proposition 2.3 we see Z = E [X | G].

Propostion 2.5. If Z is G measurable, then E [XZ | G] = ZE [X | G].

Proof. Note that ZE [X | G] is G measurable, so by Proposition 2.3 we need to show its
expectation over sets C in G is the same as that of XZ. As in the proof of Proposition
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2.2, it suffices to consider only the case when C is one of the Bi. Now Z is G measurable,
hence it is constant on Bi; let its value be zi. Then

E [ZE [X | G];Bi] = E [ziE [X | G];Bi] = ziE [E [X | G];Bi] = ziE [X;Bi] = E [XZ;Bi]

as desired.

This proposition says that as far as conditional expectations with respect to a σ-
field G go, G-measurable random variables act like constants: they can be taken inside or
outside the conditional expectation at will.

Proposition 2.6. If H ⊂ G ⊂ F , then

E [E [X | H] | G] = E [X | H] = E [E [X | G] | H].

Proof. E [X | H] is H measurable, hence G measurable, since H ⊂ G. The left hand
equality now follows by Proposition 2.4(3). To get the right hand equality, let W be the
right hand expression. It is H measurable, and if C ∈ H ⊂ G, then

E [W ;C] = E [E [X | G];C] = E [X;C]

as required.

In words, if we are predicting a prediction of X given limited information, this is
the same as a single prediction given the least amount of information.

If Y is a discrete random variables, that is, it takes only countably many values
y1, y2, . . ., we let Bi = (Y = yi). These will be disjoint sets whose union is Ω. If σ(Y )
is the collection of all unions of the Bi, then σ(Y ) is a σ-field, and is called the σ-field
generated by Y . It is easy to see that this is the smallest σ-field with respect to which Y

is measurable. We write E [X | Y ] for E [X | σ(Y )].

3. Martingales.
Suppose we have a sequence of σ-fields F1 ⊂ F2 ⊂ F3 · · ·. An example would be

repeatedly tossing a coin and letting Fk be the sets that can be determined by the first
k tosses. Another example is to let Fk be the events that are determined by the values
of a stock at times 1 through k. A third example is to let X1, X2, . . . be a sequence of
random variables and let Fk be the σ-field generated by X1, . . . , Xk, the smallest σ-field
with respect to which X1, . . . , Xk are measurable.

A r.v. X is integrable if E |X| < ∞. Given an increasing sequence of σ-fields Fn, a
sequence of r.v.’s Xn is adapted if Xn is Fn measurable for each n.
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A martingale Mn is a sequence of random variables such that Mn is integrable for
all n, Mn is adapted to Fn, and

E [Mn+1 | Fn] = Mn (3.1)

for each n. Martingales will be ubiquitous in financial math.
The word “martingale” comes from the piece of a horse’s bridle that runs from the

horse’s head to its chest. It keeps the horse from raising its head too high. It turns out
that martingales in probability cannot get too large.

Here is an example. Let X1, X2, . . . be a sequence of independent r.v.’s with mean 0
that are independent. Set Fn = σ(X1, . . . , Xn), the σ-field generated by X1, . . . , Xn. Let
Mn =

∑n
i=1 Xi. Then

E [Mn+1 | Fn] = X1 + · · ·+ Xn + E [Xn+1 | Fn] = Mn + E Xn+1 = Mn,

where we used the independence.
Another example: suppose in the above that the Xk all have variance 1, and let

Mn = S2
n − n, where Sn =

∑n
i=1 Xi. We compute

E [Mn+1 | Fn] = E [S2
n + 2Xn+1Sn + X2

n+1 | Fn]− (n + 1).

We have E [S2
n | Fn] = S2

n since Sn is Fn measurable. E [2Xn+1Sn | Fn] = 2SnE [Xn+1 |
Fn] = 2SnE Xn+1 = 0. And E [X2

n+1 | Fn] = E X2
n+1 = 1. Substituting, we obtain

E [Mn+1 | Fn] = Mn, or Mn is a martingale.
A third example: Suppose you start with a dollar and you are tossing a fair coin

independently. If it turns up heads you double your fortune, tails you go broke. This is
“double or nothing.” Let Mn be your fortune at time n. To formalize this, let X1, X2, . . .

be independent r.v.’s that are equal to 2 with probability 1
2 and 0 with probability 1

2 . Then
Mn = X1 · · ·Xn. To compute the conditional expectation, note E Xn+1 = 1. Then

E [Mn+1 | Fn] = MnE [Xn+1 | Fn] = MnE Xn+1 = Mn,

using the independence.
A final example for now: let F1,F2, . . . be given and let X be a fixed r.v. Let

Mn = E [X | Fn]. We have

E [Mn+1 | Fn] = E [E [X | Fn+1] | Fn] = E [X | Fn] = Mn.

4. Properties of martingales.
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When it comes to discussing American options, we will need the concept of stopping
times. A mapping τ from Ω into the nonnegative integers is a stopping time if (τ = k) ∈ Fk

for each k.
An example is τ = min{k : Sk ≥ A}. This is a stopping time because (τ = k) =

(S1, . . . , Sk−1 < A, Sk ≥ A) ∈ Fk. We can think of a stopping time as the first time
something happens. σ = max{k : Sk ≥ A}, the last time, is not a stopping time.

Here is an intuitive description of a stopping time. If I tell you to drive to the city
limits and then drive until you come to the second stop light after that, you know when
you get there that you have arrived; you don’t need to have been there before or to look
ahead. But if I tell you to drive until you come to the second stop light before the city
limits, either you must have been there before or else you have to go past where you are
supposed to stop, continue on to the city limits, and then turn around and come back two
stop lights. You don’t know when you first get to the second stop light before the city
limits that you get to stop there. The first set of instructions forms a stopping time, the
second set does not.

If Mn is an adapted sequence of integrable r.v.’s with

E [Mn+1 | Fn] ≥ Mn

for each n, then Mn is a submartingale. (Is the “≥” is replaced by “=”, of course, that is
what we called a martingale; if the “≥” is replaced by “≤”, we call Mn a supermartingale.)

Our first result is Jensen’s inequality.

Proposition 4.1. If g is convex, then

g(E [X | G]) ≤ E [g(X) | G]

provided all the expectations exist.

For ordinary expectations rather than conditional expectations, this is still true.
That is, if g is convex and the expectations exist, then

g(E X) ≤ E [g(X)].

We already know some special cases of this: when g(x) = |x|, this says |E X| ≤ E |X|;
when g(x) = x2, this says (E X)2 ≤ E X2, which we know because E X2 − (E X)2 =
E (X − E X)2 ≥ 0.

Proof. If g is convex, then the graph of g lies above all the tangent lines. Even if g does
not have a derivative at x0, there is a line passing through x0 which lies beneath the graph
of g. So for each x0 there exists c(x0) such that

g(x) ≥ g(x0) + c(x0)(x− x0).

12



Apply this with x = X(ω) and x0 = E [X | G](ω). We then have

g(X) ≥ g(E [X | G]) + c(E [X | G])(X − E [X | G]).

One can check that c can be chosen so that c(E [X | G]) is G measurable.
Now take the conditional expectation with respect to G. The first term on the right

is G measurable, so remains the same. The second term on the right is equal to

c(E [X | G])E [X − E [X | G] | G] = 0.

One reason we want Jensen’s inequality is to show that a convex function applied
to a martingale yields a submartingale.

Proposition 4.2. If Mn is a martingale and g is convex, then g(Mn) is a submartingale,

provided all the expectations exist.

Proof. By Jensen’s inequality,

E [g(Mn+1) | Fn] ≥ g(E [Mn+1 | Fn]) = g(Mn).

If Mn is a martingale, then E Mn = E [E [Mn+1 | Fn]] = E Mn+1. So E M0 =
E M1 = · · · = E Mn. Doob’s optional stopping theorem says the same thing holds when
fixed times n are replaced by stopping times.

Theorem 4.3. Suppose K is a positive integer, N is a stopping time such that N ≤ K

a.s., and Mn is a martingale. Then

E MN = E MK .

Here, to evaluate MN , one first finds N(ω) and then evaluates M·(ω) for that value of N .

Proof. We have

E MN =
K∑

k=0

E [MN ;N = k].

If we show that the k-th summand is E [Mn;N = k], then the sum will be

K∑
k=0

E [Mn;N = k] = E Mn

13



as desired. We have
E [MN ;N = k] = E [Mk;N = k]

by the definition of MN . Now (N = k) is Fk measurable, so by Proposition 2.2 and the
fact that Mk = E [Mk+1 | Fk],

E [Mk;N = k] = E [Mk+1;N = k].

We have (N = k) ∈ Fk ⊂ Fk+1. Since Mk+1 = E [Mk+2 | Fk+1], Proposition 2.2 tells us
that

E [Mk+1;N = k] = E [Mk+2;N = k].

We continue, using (N = k) ∈ Fk ⊂ Fk+1 ⊂ Fk+2, and we obtain

E [MN ;N = k] = E [Mk;N = k] = E [Mk+1;N = k] = · · · = E [Mn;N = k].

If we change the equalities in the above to inequalities, the same result holds for sub-
martingales.

As a corollary we have two of Doob’s inequalities:

Theorem 4.4. (a) If Mn is a nonnegative submartingale,

P(max
k≤n

Mk ≥ λ) ≤ 1
λ

E Mn.

(b) E (maxk≤n M2
k ) ≤ 4E M2

n.

Proof. Set Mn+1 = Mn. It is easy to see that the sequence M1,M2, . . . ,Mn+1 is also a
martingale. Let N = min{k : Mk ≥ λ} ∧ (n + 1), the first time that Mk is greater than or
equal to λ, where a ∧ b = min(a, b). Then

P(max
k≤n

Mk ≥ λ) = P(N ≤ n)

and if N ≤ n, then MN ≥ λ. Now

P(max
k≤n

Mk ≥ λ) = E [1(N≤n)] ≤ E
[MN

λ
;N ≤ n

]
(4.1)

=
1
λ

E [MN∧n;N ≤ n] ≤ 1
λ

E MN∧n.

Finally, since Mn is a submartingale, E MN∧n ≤ E Mn.
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We now look at (b). Let us write M∗ for maxk≤n Mk. We have

E [MN∧n;N ≤ n] =
∞∑

k=0

E [Mk∧n;N = k].

Arguing as in the proof of Theorem 4.3,

E [Mk∧n;N = k] ≤ E [Mn;N = k],

and so

E [MN∧n;N ≤ n] ≤
∞∑

k=0

E [Mn;N = k] = E [Mn;N ≤ n].

The last expression is at most E [Mn;M∗ ≥ λ]. If we multiply (4.1) by 2λ and integrate
over λ from 0 to ∞, we obtain∫ ∞

0

2λP(M∗ ≥ λ)dλ ≤ 2
∫ ∞

0

E [Mn : M∗ ≥ λ]

= 2E
∫ ∞

0

Mn1(M∗≥λ)dλ

= 2E
[
Mn

∫ M∗

0

dλ
]

= 2E [MnM∗].

Using Cauchy-Schwarz, this is bounded by

2(E M2
n)1/2(E (M∗)2)1/2.

On the other hand, ∫ ∞

0

2λP(M∗ ≥ λ)dλ = E
∫ ∞

0

2λ1(M∗≥λ)dλ

= E
∫ M∗

0

2λ dλ = E (M∗)2.

We therefore have
E (M∗)2 ≤ 2(E M2

n)1/2(E (M∗)2)1/2.

Suppose E (M∗)2 < ∞. We divide both sides by (E (M∗)2)1/2 and square both sides.
(When E (M∗)2 is infinite, there is a way to circumvent the division by infinity.)

The last result we want is that bounded martingales converge. (The hypothesis of
boundedness can be weakened.)
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Theorem 4.5. Suppose Mn is a martingale bounded in absolute value by K. That is,

|Mn| ≤ K for all n. Then limn→∞ Mn exists a.s.

Proof. Since Mn is bounded, it can’t tend to +∞ or −∞. The only possibility is that it
might oscillate. Let a < b be two rationals. What might go wrong is that Mn might be
larger than b infinitely often and less than a infinitely often. If we show the probability of
this is 0, then taking the union over all pairs of rationals (a, b) shows that almost surely
Mn cannot oscillate, and hence must converge.

Fix a, b and let S1 = min{k : Mk ≤ a}, T1 = min{k > S1 : Mk ≥ b}, S2 = min{k >

T1 : Mk ≤ a}, and so on. Let Un = max{k : Tk ≤ n}. Un is called the number of
upcrossings up to time n.

We can write

2K ≥ Mn −M0 =
n∑

k=1

(MSk+1∧n −MTk∧n) +
∞∑

k=1

(MTk∧n −MSk∧n) + (MS1∧n −M0).

Now take expectations. The expectation of the first sum on the right and the last term
are zero by optional stopping. The middle term is larger than (b− a)Un, so we conclude

(b− a)E Un ≤ 2K.

Let n → ∞ to see that E maxn Un < ∞, which implies maxn Un < ∞ a.s., which is what
we needed.

5. The one step binomial asset pricing model.
Let us begin by giving the simplest possible model of a stock and see how a European

call option should be valued in this context.
Suppose we have a single stock whose price is S0. Let d and u be two numbers with

0 < d < 1 < u. Here “d” is a mnemonic for “down” and “u” for “up.” After one time unit
the stock price will be either uS0 with probability P or else dS0 with probability Q, where
P + Q = 1. Instead of purchasing shares in the stock, you can also put your money in the
bank where one will earn interest at rate r. Alternatives to the bank are money market
funds or bonds; the key point is that these are considered to be risk-free.

A European call option in this context is the option to buy one share of the stock
at time 1 at price K. K is called the strike price. Let S1 be the price of the stock at time
1. If S1 is less than K, then the option is worthless at time 1. If S1 is greater than K, you
can use the option at time 1 to buy the stock at price K, immediately turn around and
sell the stock for price S1 and make a profit of S1 −K. So the value of the option at time
1 is

V1 = (S1 −K)+,
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where x+ is max(x, 0). The principal question to be answered is: what is the value V0 of
the option at time 0? In other words, how much should one pay for a European call option
with strike price K?

It is possible to buy a negative number of shares of a stock. This is equivalent to
selling shares of a stock you don’t have and is called selling short. If you sell one share
of stock short, then at time 1 you must buy one share at whatever the market price is at
that time and turn it over to the person that you sold the stock short to. Similarly you
can buy a negative number of options, that is, sell an option.

You can also deposit a negative amount of money in the bank, which is the same
as borrowing. We assume that you can borrow at the same interest rate r, not exactly a
totally realistic assumption. One way to make it seem more realistic is to assume you have
a large amount of money on deposit, and when you borrow, you simply withdraw money
from that account.

We are looking at the simplest possible model, so we are going to allow only one
time step: one makes an investment, and looks at it again one day later.

Let’s suppose the price of a European call option is V0 and see what conditions
one can put on V0. Suppose you start out with V0 dollars. One thing you could do is
buy one option. The other thing you could do is use the money to buy ∆0 shares of
stock. If V0 > ∆0S0, there will be some money left over and you put that in the bank. If
V0 < ∆0S0, you do not have enough money to buy the stock, and you make up the shortfall
by borrowing money from the bank. In either case, at this point you have V0 −∆0S0 in
the bank and ∆0 shares of stock.

If the stock goes up, at time 1 you will have

∆0uS0 + (1 + r)(V0 −∆0S0),

and if it goes down,
∆0dS0 + (1 + r)(V0 −∆0S0).

We have not said what ∆0 should be. Let us do that now. Let V u
1 = (uS0 −K)+

and V d
1 = (dS0 −K)+. Note these are deterministic quantities, i.e., not random. Let

∆0 =
V u

1 − V d
1

uS0 − dS0
,

and we will also need

W0 =
1

1 + r

[1 + r − d

u− d
V u

1 +
u− (1 + r)

u− d
V d

1

]
.

After some algebra, we see that if the stock goes up and you had bought stock
instead of the option you would now have

V u
1 + (1 + r)(V0 −W0),
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while if the stock went down, you would now have

V d
1 + (1 + r)(V0 −W0).

Let’s check the first of these, the second being similar. We need to show

∆0uS0 + (1 + r)(V0 −∆0S0) = V u
1 + (1 + r)(V0 −W0). (5.1)

The left hand side is equal to

∆0S0(u− (1 + r)) + (1 + r)V0 =
V u

1 − V d
1

u− d
(u− (1 + r)) + (1 + r)V0. (5.2)

The right hand side of (5.1) is equal to

V u
1 −

[1 + r − d

u− d
V u

1 +
u− (1 + r)

u− d
V d

1

]
+ (1 + r)V0. (5.3)

Now check that the coefficients of V0, of V u
1 , and of V d

1 agree in (5.2) and (5.3).

Suppose that V0 > W0. What you want to do is come along with no money, sell
one option for V0 dollars, use the money to buy ∆0 shares, and put the rest in the bank
(or borrow if necessary). If the buyer of your option wants to exercise the option, you give
him one share of stock and sell the rest. If he doesn’t want to exercise the option, you sell
your shares of stock and pocket the money. Remember it is possible to have a negative
number of shares. You will have cleared (1 + r)(V0 −W0), whether the stock went up or
down, with no risk.

If V0 < W0, you just do the opposite: sell ∆0 shares of stock short, buy one option,
and deposit or make up the shortfall from the bank. This time, you clear (1+r)(W0−V0),
whether the stock goes up or down.

Now most people believe that you can’t make a profit on the stock market without
taking a risk. The name for this is “no free lunch,” or “arbitrage opportunities do not
exist.” The only way to avoid this is if V0 = W0. In other words, we have shown that the
only reasonable price for the European call option is W0.

The “no arbitrage” condition is not just a reflection of the belief that one cannot get
something for nothing. It also represents the belief that the market is freely competitive.
The way it works is this: suppose W0 = $3. Suppose you could sell options at a price
V0 = $5; this is larger than W0 and you would earn V0−W0 = $2 per option without risk.
Then someone else would observe this and decide to sell the same option at a price less
than V0 but larger than W0, say $4. This person would still make a profit, and customers
would go to him and ignore you because they would be getting a better deal. But then a
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third person would decide to sell the option for less than your competition but more than
W0, say at $3.50. This would continue as long as any one would try to sell an option above
price W0.

We will examine this problem of pricing options in more complicated contexts, and
while doing so, it will become apparent where the formulas for ∆0 and W0 came from. At
this point, we want to make a few observations.

Remark 5.1. First of all, if 1 + r > u, one would never buy stock, since one can always
do better by putting money in the bank. So we may suppose 1 + r < u. We always have
1 + r ≥ 1 > d. If we set

p =
1 + r − d

u− d
, q =

u− (1 + r)
u− d

,

then p, q ≥ 0 and p + q = 1. Thus p and q act like probabilities, but they have nothing to
do with P and Q. Note also that the price V0 = W0 does not depend on P or Q. It does
depend on p and q, which seems to suggest that there is an underlying probability which
controls the option price and is not the one that governs the stock price.

Remark 5.2. There is nothing special about European call options in our argument
above. One could let V u

1 and V 1
d be any two values of any option, which are paid out if the

stock goes up or down, respectively. The above analysis shows we can exactly duplicate
the result of buying any option V by instead buying some shares of stock. If in some model
one can do this for any option, the market is called complete in this model.

Remark 5.3. If we let P be the probability so that S1 = uS0 with probability p and
S1 = dS0 with probability q and we let E be the corresponding expectation, then some
algebra shows that

V0 =
1

1 + r
E V1.

This will be generalized later.

Remark 5.4. If one buys one share of stock at time 0, then one expects at time 1 to
have (Pu + Qd)S0. One then divides by 1 + r to get the value of the stock in today’s
dollars. Suppose instead of P and Q being the probabilities of going up and down, they
were in fact p and q. One would then expect to have (pu+ qd)S0 and then divide by 1+ r.
Substituting the values for p and q, this reduces to S0. In other words, if p and q were
the correct probabilities, one would expect to have the same amount of money one started
with. When we get to the binomial asset pricing model with more than one step, we will
see that the generalization of this fact is that the stock price at time n is a martingale, still
with the assumption that p and q are the correct probabilities. This is a special case of
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the fundamental theorem of finance: there always exists some probability, not necessarily
the one you observe, under which the stock price is a martingale.

Remark 5.5. Our model allows after one time step the possibility of the stock going up or
going down, but only these two options. What if instead there are 3 (or more) possibilities.
Suppose for example, that the stock goes up a factor u with probability P , down a factor
d with probability Q, and remains constant with probability R, where P + Q + R = 1.
The corresponding price of a European call option would be (uS0 −K)+, (dS0 −K)+, or
(S0 −K)+. If one could replicate this outcome by buying and selling shares of the stock,
then the “no arbitrage” rule would give the exact value of the call option in this model.
But, except in very special circumstances, one cannot do this, and the theory falls apart.
One has three equations one wants to satisfy, in terms of V u

1 , V d
1 , and V c

1 . (The “c” is
a mnemonic for “constant.”) There are however only two variables, ∆0 and V0 at your
disposal, and most of the time three equations in two unknowns cannot be solved.

6. The multi-step binomial asset pricing model.
In this section we will obtain a formula for the pricing of options when there are n

time steps, but each time the stock can only go up by a factor u or down by a factor d.
The “Black-Scholes” formula we will obtain is already a nontrivial result that is useful.

We assume the following.
(1) Unlimited short selling of stock
(2) Unlimited borrowing
(3) No transaction costs
(4) Our buying and selling is on a small enough scale that it does not affect the market.

We need to set up the probability model. Ω will be all sequences of length n of H’s
and T ’s. S0 will be a fixed number and we define Sk(ω) = ujdk−jS0 if the first k elements
of a given ω ∈ Ω has j occurrences of H and k− j occurrences of T . (What we are doing is
saying that if the j-th element of the sequence making up ω is an H, then the stock price
goes up by a factor u; if T , then down by a factor d.) Fk will be the σ-field generated by
S0, . . . , Sk.

Let

p =
(1 + r)− d

u− d
, q =

u− (1 + r)
u− d

and define P(ω) = pjqn−j if ω has j appearances of H and n − j appearances of T . It
is not hard to see that under P the random variables Sk+1/Sk are independent and equal
to u with probability p and d with probability q. To see this, let Yk = Sk/Sk−1. Then
P(Y1 = y1, . . . , Yn = yn) = pjqn−j , where j is the number of the yk that are equal to u. On
the other hand, this is equal to P(Y1 = y1) · · ·P(Yn = yn). Let E denote the expectation
corresponding to P.
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The P we construct may not be the true probabilities of going up or down. That
doesn’t matter - it will turn out that using the principle of “no arbitrage,” it is P that
governs the price.

Our first result is the fundamental theorem of finance in the current context.

Proposition 6.1. Under P the discounted stock price (1 + r)−kSk is a martingale.

Proof. Since the random variable Sk+1/Sk is independent of Fk, we have

E [(1 + r)−(k+1)Sk+1 | Fk] = (1 + r)−kSk(1 + r)−1E [Sk+1/Sk | Fk].

Using the independence the conditional expectation on the right is equal to

E [Sk+1/Sk] = pu + qd = 1 + r.

Substituting yields the proposition.

Let ∆k be the number of shares held between times k and k + 1. We require ∆k

to be Fk measurable. ∆0,∆1, . . . is called the portfolio process. Let W0 be the amount of
money you start with and let Wk be the amount of money you have at time k. Wk is the
wealth process. Then

Wk+1 = ∆kSk+1 + (1 + r)[Wk −∆kSk].

Note that in the case where r = 0 we have

Wk+1 −Wk = ∆k(Sk+1 − Sk),

or

Wk+1 =
k∑

i=0

∆i(Si+1 − Si).

This is a discrete version of a stochastic integral. Since

E [Wk+1 −Wk | Fk] = ∆kE [Sk+1 − Sk | Fk] = 0,

it follows that Wk is a martingale. More generally

Proposition 6.2. Under P the discounted wealth process (1 + r)−kWk is a martingale.

Proof. We have

(1 + r)−(k+1)Wk+1 = (1 + r)−kWk + ∆k[(1 + r)−(k+1)Sk+1 − (1 + r)−kSk],
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and so

E [∆k[(1 + r)−(k+1)Sk+1 − (1 + r)−kSk | Fk]

= ∆kE [(1 + r)−(k+1)Sk+1 − (1 + r)−kSk | Fk] = 0.

The result follows.

Our next result is that the binomial model is complete. It is easy to lose the idea
in the algebra, so first let us try to see why the theorem is true.

For simplicity suppose r = 0. Let Vk = E [V | Fk]; we saw that Vk is a martingale.
We want to construct a portfolio process so that Wn = V . We will do it inductively by
arranging matters so that Wk = Vk for all k. Recall that Wk is also a martingale.

Suppose we have Wk = Vk at time k and we want to find ∆k so that Wk+1 = Vk+1.
At the (k + 1)-st step there are only two possible changes for the price of the stock and so
since Vk+1 is Fk+1 measurable, only two possible values for Vk+1. We need to choose ∆k

so that Wk+1 = Vk+1 for each of these two possibilities. We only have one parameter, ∆k,
to play with to match up two numbers, which may seem like an overconstrained system of
equations. But both V and W are martingales, which is why the system can be solved.

Now let us turn to the details.

Theorem 6.3. The binomial asset pricing model is complete.

Proof. Let
Vk = (1 + r)kE [(1 + r)−nV | Fk]

so that (1 + r)−kVk is a martingale. If ω = (t1, . . . , tn), where each ti is an H or T , let

∆k(ω) =
Vk+1(t1, . . . , tk,H, tk+2, . . . , tn)− Vk+1(t1, . . . , tk, T, tk+2, . . . , tn)
Sk+1(t1, . . . , tk,H, tk+2, . . . , tn)− Sk+1(t1, . . . , tk, T, tk+2, . . . , tn)

.

Set W0 = V0, and we will show by induction that the wealth process at time k + 1 equals
Vk+1.

The first thing to show is that ∆k is Fk measurable. Neither Sk+1 nor Vk+1 depends
on tk+2, . . . , tn. So ∆k depends only on the variables t1, . . . , tk, hence is Fk measurable.

Now tk+2, . . . , tn play no role in the rest of the proof, and t1, . . . , tk will be fixed,
so we drop the t’s from the notation.

We know (1 + r)−kVk is a martingale under P so that

Vk = E [(1 + r)−1Vk+1 | Fk]

=
1

1 + r
[pVk+1(H) + qVk+1(T )].
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We now suppose Wk = Vk and want to show Wk+1(H) = Vk+1(H) and Wk+1(T ) =
Vk+1(T ). Then using induction we have Wn = Vn = V as required. We show the first
equality, the second being similar.

Wk+1(H) = ∆kSk+1(H) + (1 + r)[Wk −∆kSk]

= ∆k[uSk − (1 + r)Sk] + (1 + r)Vk

=
Vk+1(H)− Vk+1(T )

(u− d)Sk
Sk[u− (1 + r)] + pVk+1(H) + qVk+1(T )

= Vk+1(H).

We are done.

Finally, we obtain the Black-Scholes formula in this context. Let V be any option
that is Fn-measurable. The one we have in mind is the European call, for which V =
(Sn −K)+, but the argument is the same for any option whatsoever.

Theorem 6.4. The value of the option V at time 0 is V0 = (1 + r)−nE V .

Proof. We can construct a portfolio process ∆k so that if we start with W0 = (1+r)−nE V ,
then the wealth at time n will equal V , no matter what the market does in between. If
we could buy or sell the option V at a price other than W0, we could obtain a riskless
profit. That is, if the option V could be sold at a price c0 larger than W0, we would sell
the option for c0 dollars, use W0 to buy and sell stock according to the portfolio process
∆k, have a net worth of V +(1+ r)n(c0−W0) at time n, meet our obligation to the buyer
of the option by using V dollars, and have a net profit, at no risk, of (1 + r)n(c0 −W0).
If c0 were less than W0, we would do the same except buy an option, hold −∆k shares at
time k, and again make a riskless profit. By the “no arbitrage” rule, that can’t happen,
so the price of the option V must be W0.

Remark 6.5. Note that the proof of Theorem 6.4 tells you precisely what hedging
strategy (i.e., what portfolio process to use).

In the binomial asset pricing model, there is no difficulty computing the price of a
European call. We have

E (Sn −K)+ =
∑

x

(x−K)+P(Sn = x)

and

P(Sn = x) =
(

n
k

)
pkqn−k
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if x = ukdn−kS0. Therefore the price of the European call is

n∑
k=0

(ukdn−kS0 −K)+
(

n
k

)
pkqn−k.

The formula in Theorem 6.4 holds for exotic options as well. Suppose

V = max
i=1,...,n

Si − min
j=1,...,n

Sj .

In other words, you sell the stock for the maximum value it takes during the first n time
steps and you buy at the minimum value the stock takes; you are allowed to wait until
time n and look back to see what the maximum and minimum were. You can even do this
if the maximum comes before the minimum. This V is still Fn measurable, so the theory
applies. Naturally, such a “buy low, sell high” option is very desirable, and the price of
such a V will be quite high. It is interesting that even without using options, you can
duplicate the operation of buying low and selling high by holding an appropriate number
of shares ∆k at time k, where you do not look into the future to determine ∆k.

7. American options.
An American option is one where you can exercise the option any time before some

fixed time T . For example, on a European call, one can only use it to buy a share of stock
at the expiration time T , while for an American call, at any time before time T , one can
decide to pay K dollars and obtain a share of stock.

Let us give an informal argument on how to price an American call, giving a more
rigorous argument in a moment. One can always wait until time T to exercise an American
call, so the value must be at least as great as that of a European call. On the other hand,
suppose you decide to exercise early. You pay K dollars, receive one share of stock, and
your wealth is St−K. You hold onto the stock, and at time T you have one share of stock
worth ST , and for which you paid K dollars. So your wealth is ST −K ≤ (ST −K)+. In
fact, we have strict inequality, because you lost the interest on your K dollars that you
would have received if you had waited to exercise until time T . Therefore an American
call is worth no more than a European call, and hence its value must be the same as that
of a European call.

This argument does not work for puts, because selling stock gives you some money
on which you will receive interest, so it may be advantageous to exercise early. (A put is
the option to sell a stock at a price K at time T .)

Here is the more rigorous argument. Let g(x) be convex with g(0) = 0. Certainly
g(x) = (x−K)+ is such a function. We have

g(λx) = g(λx + (1− λ) · 0) ≤ λg(x) + (1− λ)g(0) = λg(x).
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By Jensen’s inequality,

E [(1 + r)−(k+1)g(Sk+1) | Fk] = (1 + r)−kE
[ 1
1 + r

g(Sk+1) | Fk

]
≥ (1 + r)−kE

[
g
( 1

1 + r
Sk+1

)
| Fk

]
≥ (1 + r)−kg

(
E

[ 1
1 + r

Sk+1 | Fk

])
= (1 + r)−kg(Sk).

So (1 + r)−kg(Sk) is a submartingale. By optional stopping,

E [(1 + r)−τg(Sτ )] ≤ E [(1 + r)−ng(Sn)],

so τ ≡ n always does best.

8. Continuous random variables.
We are now going to start working towards continuous times and stocks that can

take any positive number as a value, so we need to prepare by extending some of our
definitions.

Given any random variable X, we can approximate it by r.v’s Xn that are discrete.
We let

Xn =
n2n∑

i=−n2n

i

2n
1(i/2n≤X<(i+1)/2n).

In words, if X(ω) lies between −n and n, we let Xn(ω) be the closest value i/2n that
is less than or equal to X(ω). For ω where |X(ω)| > n we set Xn(ω) = 0. Clearly the
Xn are discrete, and approximate X. In fact, on the set where |X| ≤ n, we have that
|X(ω)−Xn(ω)| ≤ 2−n.

For reasonable X we are going to define E X = lim E Xn. There are some things
one wants to prove, but all this has been worked out in measure theory and the theory of
the Lebesgue integral. Let us confine ourselves here to showing this definition is the same
as the usual one when X has a density.

Recall X has a density fX if

P(X ∈ [a, b]) =
∫ b

a

fX(x)dx

for all a and b. In this case

E X =
∫ ∞

−∞
xfX(x)dx.
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With our definition of Xn we have

P(Xn = i/2n) = P(X ∈ [i/2n, (i + 1)/2n)) =
∫ (i+1)/2n

i/2n

fX(x)dx.

Then

E Xn =
∑

i

i

2n
P(Xn = i/2n) =

∑
i

∫ (i+1)/2n

i/2n

i

2n
fX(x)dx.

Since x differs from i/2n by at most 1/2n when x ∈ [i/2n, (i + 1)/2n), this will tend to∫
xfX(x)dx, unless the contribution to the integral for |x| ≥ n does not go to 0 as n →∞.

As long as
∫
|x|fX(x)dx < ∞, one can show that this contribution does indeed go to 0.

We also need an extension of the definition of conditional probability. A r.v. is G
measurable if (X > a) ∈ G for every a. How do we define E [Z | G] when G is not generated
by a countable collection of disjoint sets?

Again, there is a completely worked out theory that holds in all cases. Let us give
a definition that is equivalent that works except for a very few cases. Let us suppose that
for each n the σ-field Gn is finitely generated. This means that Gn is generated by finitely
many disjoint sets Bn1, . . . , Bnmn . So for each n, the number of Bni is finite but arbitrary,
the Bni are disjoint, and their union is Ω. Suppose also that G1 ⊂ G2 ⊂ · · ·. Now ∪nGn

will not in general be a σ-field, but suppose G is the smallest σ-field that contains all the
Gn. Finally, define P(A | G) = lim P(A | Gn).

This is a fairly general set-up. For example, let Ω be the real line and let Gn be
generated by the sets (−∞, n), [n,∞) and [i/2n, (i + 1)/2n). Then G will contain every
interval that is closed on the left and open on the right, hence G must be the σ-field that
one works with when one talks about Lebesgue measure on the line.

The question that one might ask is: how does one know the limit exists? Since the
Gn increase, we know that Mn = P(A | Gn) is a martingale with respect to the Gn. It is
certainly bounded above by 1 and bounded below by 0, so by the martingale convergence
theorem, it must have a limit as n →∞.

Once one has a definition of conditional probability, one defines conditional expec-
tation by what one expects. If X is discrete, one can write X as

∑
j aj1Aj and then one

defines
E [X | G] =

∑
j

ajP(Aj | Gn).

If the X is not discrete, one approximates as above. One has to worry about convergence,
but everything does go through.

With this extended definition of conditional expectation, do all the properties of
Section 2 hold? The answer is yes, and the proofs are by taking limits of the discrete
approximations.
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We will be talking about stochastic processes. Previously we discussed sequences
S1, S2, . . . of r.v.’s. Now we want to talk about processes Yt for t ≥ 0. We typically let
Ft be the smallest σ-field with respect to which Ys is measurable for all s ≤ t. As you
might imagine, there are a few technicalities one has to worry about. We will try to avoid
thinking about them as much as possible.

A continuous time martingale (or submartingale) is what one expects: Mt is in-
tegrable, adapted to Ft, and if s < t, then E [Mt | Fs] = Ms. The analogues of Doob’s
theorems go through. The way to prove these is to observe that Mk/2n is a discrete time
martingale, and then to take limits as n →∞.

9. Brownian motion.
Let Sn be a simple symmetric random walk. This means that Yk = Sk − Sk−1

equals +1 with probability 1
2 , equals −1 with probability 1

2 , and is independent of Yj for
j < k. We notice that E Sn = 0 while E S2

n =
∑n

i=1 E Y 2
i +

∑
i 6=j E YiYj = n using the fact

that E [YiYj ] = (E Yi)(E Yj) = 0.
Define Xn

t = Snt/
√

n if nt is an integer and by linear interpolation for other t. If
nt is an integer, E Xn

t = 0 and E (Xn
t )2 = t. It turns out Xn

t does not converge for any ω.
However there is another kind of convergence, called weak convergence, that takes

place. There exists a process Zt such that for each k, each t1 < t2 < · · · < tk, and each
a1 < b1, a2 < b2, . . . , ak < bk, we have

(1) The paths of Zt are continuous as a function of t.
(2) P(Xn

t1 ∈ [a1, b1], . . . , Xn
tk
∈ [ak, bk]) → P(Zt1 ∈ [a1, b1], . . . , Ztk

∈ [ak, bk]).

The limit Zt is called a Brownian motion starting at 0. It has the following properties.
(1) E Zt = 0.
(2) E Z2

t = t.
(3) Zt − Zs is independent of Fs = σ(Zr, r ≤ s).
(4) Zt−Zs has the distribution of a normal random variable with mean 0 and variance

t− s. This means

P(Zt − Zs ∈ [a, b]) =
∫ b

a

1√
2π(t− s)

e−y2/2(t−s)dy.

(This result follows from the central limit theorem.)
(5) The map t → Zt(ω) is continuous for each ω.

10. Markov properties of Brownian motion.
Fix r and let Wt = Zt+r − Zr. Clearly the map t → Wt is continuous since the

same is true for Z. Since Wt − Ws = Zt+r − Zs+r, then the distribution of Wt − Ws is
normal with mean zero and variance (t + r)− (s + r). One can also check the other parts
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of the definition and we see that Wt is also a Brownian motion. This is a version of the
Markov property. We will prove the following stronger result, which is a version of the
strong Markov property.

A stopping time in the continuous framework is a r.v. T taking values in [0,∞)
such that (T > t) ∈ Ft for all t. To make a satisfactory theory, one needs that the Ft be
what is called right continuous: Ft = ∩ε>0Ft+ε, but this is fairly technical and we will
ignore it.

If T is a stopping time, FT is the collection of events A such that A∩ (T > t) ∈ Ft

for all t.

Proposition 10.1. If Xt is a Brownian motion and T is a bounded stopping time, then

XT+t −XT is a mean 0 variance t random variable and is independent of FT .

Proof. Let Tn be defined by Tn(ω) = (k + 1)/2n if T (ω) ∈ [k/2n, (k + 1)/2n). It is easy
to check that Tn is a stopping time. Let f be continuous and A ∈ FT . Then A ∈ FTn

as
well. We have

E [f(XTn+t −XTn);A] =
∑

E [f(X k
2n +t −X k

2n
);A ∩ Tn = k/2n]

=
∑

E [f(X k
2n +t −X k

2n
)]P(A ∩ Tn = k/2n)

= E f(Xt)P(A).

Let n →∞, so

E [f(XT+t −XT );A] = E f(Xt)P(A).

Taking limits this equation holds for all bounded f .
If we take A = Ω and f = 1B , we see that XT+t − XT has the same distribution

as Xt, which is that of a mean 0 variance t normal random variable. If we let A ∈ FT be
arbitrary and f = 1B , we see that

P(XT+t −XT ∈ B,A) = P(Xt ∈ B)P(A) = P(XT+t −XT ∈ B)P(A),

which implies that XT+t −XT is independent of FT .

This proposition says: if you want to predict XT+t, you could do it knowing all of
FT or just knowing XT . Since XT+t − XT is independent of FT , the extra information
given in FT does you no good at all.

We need a way of expressing the Markov and strong Markov properties that will
generalize to other processes.

28



Let Wt be a Brownian motion. Consider the process W x
t = x+Wt, Brownian motion

started at x. Define Ω′ to be set of continuous functions on [0,∞), let Xt(ω) = ω(t), and
let the σ-field be the one generated by the Xt. Define Px on (Ω′,F ′) by

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) = P(W x
t1 ∈ A1, . . . ,W

x
tn
∈ An).

What we have done is gone from one probability space Ω with many processes W x
t to one

process Xt with many probability measures Px.

Proposition 10.2. If s < t and f is bounded or nonnegative, then

E x[f(Xt) | Fs] = E Xs [f(Xt−s)], a.s.

The right hand side is to be interpreted as follows. Define ϕ(x) = E xf(Xt−s). Then
E Xsf(Xt−s) means ϕ(Xs(ω)). One often writes Ptf(x) for E xf(Xt).

Before proving this, recall from undergraduate analysis that every bounded function
is the limit of linear combinations of functions eiux, u ∈ R. This follows from using the
inversion formula for Fourier transforms. There are various slightly different formulas for
the Fourier transform. We use f̂(u) =

∫
eiuxf(x) dx. If f is smooth enough and has

compact support, then one can recover f by the formula f(x) = 1
2π

∫
e−iuxf̂(u) du. We

can first approximate this improper integral by 1
2π

∫ N

−N
e−iuxf̂(u) du by taking N large

enough, and then approximate the approximation by using Riemann sums. Thus we can
approximate f(x) by a linear combination of terms of the form eiujx. Also, bounded
functions can be approximated by smooth functions with compact support.

Proof. Let f(x) = eiux. Then

E x[eiuXt | Fs] = eiuXsE [eiu(Xt−Xs) | Fs]

= eiuXse−u2(t−s)/2.

On the other hand,

ϕ(y) = E y[f(Xt−s)] = E [eiu(Wt−s+y)] = eiuye−u2(t−s)/2.

So ϕ(Xs) = E x[eiuXt | Fs]. Using linearity and taking limits, we have the lemma for all
f .

This formula generalizes: If s < t < u, then

E x[f(Xt)g(Xu) | Fs] = E Xs [f(Xt−s)g(Xu−s)],

and so on for functions of X at more times.

Using Proposition 10.1, the statement and proof of Proposition 10.2 can be extended
to stopping times.
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Proposition 10.3. If T is a bounded stopping time, then

E x[f(XT+t) | FT ] = E XT [f(Xt)].

11. Stochastic integrals.
If one wants to consider the (deterministic) integral

∫ t

0
f(s) dg(s), where f and g

are continuous and g is differentiable, we can define it analogously to the usual Riemann
integral as the limit of Riemann sums

∑n
i=1 f(si)[g(si)−g(si−1)], where s1 < s2 < · · · < sn

is a partition of [0, t]. This is known as the Riemann-Stieltjes integral. One can show (using
the mean value theorem, for example) that∫ t

0

f(s) dg(s) =
∫ t

0

f(s)g′(s) ds.

If we were to take f(s) = 1[0,a](s), one would expect the following:∫ t

0

1[0,a](s) dg(s) =
∫ t

0

1[0,a](s)g′(s) ds =
∫ a

0

g′(s) ds = g(a)− g(0).

Note that although we use the fact that g is differentiable in the intermediate stages, the
first and last terms make sense for any g.

We now want to replace g by a Brownian path and f by a random integrand. The
expression

∫
f(s) dW (s) does not make sense as a Riemann-Stieltjes integral because it is

a fact that W (s) is not differentiable as a function of t. We need to define the expression
by some other means. We will show that it can be defined as the limit in L2 of Riemann
sums. The resulting integral is called a stochastic integral.

Let us consider a very special case first. Suppose f is continuous and determin-
istic (i.e., does not depend on ω). Suppose we take a Riemann sum approximation∑

f( i
2n )[W ( i+1

2n ) − W ( i
2n )]. If we take the difference of two successive approximations

we have terms like∑
i odd

[f(i/2n+1)− f((i + 1)/2n+1)][W ((i + 1)/2n+1)−W (i/2n+1)].

This has mean zero. By the independence, the second moment is∑
[f(i/2n+1)− f((i + 1)/2n+1)]2(1/2n+1).

This will be small if f is continuous. So by taking a limit in L2 we obtain a nontrivial
limit.

We now turn to the general case. Let Wt be a Brownian motion. We will only
consider integrands Hs such that Hs is Fs measurable for each s. We will construct∫ t

0
Hs dWs for all H with E

∫ t

0
H2

s ds < ∞.

Before we proceed we will need to define the quadratic variation of a continuous
martingale. We will use the following theorem without proof because in our applications
we can construct the desired increasing process directly.
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Theorem 11.1. Suppose Mt is a continuous martingale such that E M2
t < ∞ for all t.

There exists one and only one increasing process At that is adapted to Ft, has continuous

paths, and A0 = 0 such that M2
t −At is a martingale.

The simplest example of such a martingale is Brownian motion. If Wt is a Brownian
motion, let Lt = W 2

t − t. Note

E [Lt | Fs] = E [((Wt −Ws) + Ws)2 | Fs]− t

= E [(Wt −Ws)2 | Fs]− 2E [Ws(Wt −Ws) | Fs] + E [W 2
s | Fs]− t.

The first term, using independence, is E [(Wt−Ws)2] = t−s, the second term is WsE [Wt−
Ws | Fs] = WsE [Wt −Ws] = 0, and so we have

E [Lt | Fs] = (t− s) + W 2
s − t = Ls,

or Lt is a martingale. So in the case of Brownian motion, the increasing process At = t.
We use the notation 〈M〉t for the increasing process given in Theorem 11.1. We

will see that in the case of stochastic integrals, where Nt =
∫ t

0
HsdWs, it turns out that

〈N〉t =
∫ t

0
H2

s ds.
If K is bounded and Fa measurable, let Nt = K(Wt∧b−Wt∧a). Part of the statement

of the next proposition is that 〈N〉t exists.

Lemma 11.2. Nt is a continuous martingale, E N2
∞ = E [K2(b− a)] and

〈N〉t =
∫ t

0

K21[a,b](s) ds.

Proof. The continuity is clear. Let us look at E [Nt | Fs]. In the case a < s < t < b, this
is equal to

E [K(Wt −Wa) | Fs] = KE [(Wt −Wa) | Fs] = K(Ws −Wa) = Ns.

In the case s < a < t < b, E [Nt | Fs] is equal to

E [K(Wt −Wa) | Fs] = E [KE [Wt −Wa | Fa] | Fs] = 0 = Ns.

The other possibilities for where s and t are can be done similarly.
Recall W 2

t − t is a martingale. For E N2
∞, we have

E N2
∞ = E [K2E [(Wb −Wa)2 | Fa]] = E [K2E [W 2

b −W 2
a | Fa]]

= E [K2E [b− a | Fa]] = E [K2(b− a)].
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For 〈N〉t, we need to show

E [K2(Wt∧b −Wt∧a)2 −K2(t ∧ b− t ∧ a) | Fs]

= K2(Ws∧b −Ws∧a)2 −K2(s ∧ b− s ∧ a).

We do this by checking all the cases.

Hs is said to be simple if it can be written in the form
∑J

j=1 Hj1[aj ,bj ](s), where
Hj is Fsj

measurable and bounded. Define

Nt =
∫ t

0

Hs dWs =
J∑

j=1

Hj(Wbj∧t −Waj∧t).

Proposition 11.3. Nt is a continuous martingale, E N2
∞ = E

∫∞
0

H2
s ds, and 〈N〉t =∫ t

0
H2

s ds.

Proof. We may rewrite H so that the intervals [aj , bj ] satisfy a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ bj .
It is then clear that Nt is a martingale.

We have

E N2
∞ = E

[ ∑
H2

j (Wbj
−Waj

)2
]

+ 2E
[ ∑

i<j

HiHj(Wbi
−Wai

)(Wbj
−Waj

)
]
.

The cross terms vanish, because when we condition on Faj
, we have

E [HiHj(Wbi
−Wai

)E [(Wbj
−Waj

) | Faj
] = 0.

For the diagonal terms

E [H2
j (Wbj

−Waj
)2] = E [H2

j E [(Wbj
−Waj

)2 | Faj
]]

= E [H2
j E [W 2

bj
−W 2

aj
| Faj

]]

= E [H2
j E [bj − aj | Faj

]]

= E [H2
j ([bj − aj)].

So E N2
∞ = E

∫∞
0

H2
s ds.

Now suppose Hs is adapted and E
∫∞
0

H2
s ds < ∞. Let us define some norms; these

are just for technical purposes and can be ignored if wished. Let

‖Hs‖H =
(
E

∫ ∞

0

H2
s ds

)1/2

.
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This is the L2 norm on [0,∞)×Ω with respect to the measure νH(A) = E
∫∞
0

1Ads. Define
another norm by

‖Y ‖S = (E [sup
t
|Yt|2])1/2.

Using some results from measure theory, we can choose Hn
s simple such that E

∫∞
0

(Hn
s −

Hs)2 ds → 0. (This is the fact that simple functions are dense in L2.) By Doob’s inequality
we have

E
[
sup

t

( ∫ t

0

(Hn
s −Hm

s ) dWs

)2]
≤ 4E

( ∫ ∞

0

(Hn
s −Hm

s ) dWs

)2

= 4E
∫ ∞

0

(Hn
s −Hm

s )2 ds → 0.

One can show that the norm ‖Y ‖S is complete, so there exists a process Nt such that
supt[

∫ t

0
Hn

s dWs −Nt] → 0 in L2.
If Hn

s and Hn
s
′ are two sequences converging to H, then E (

∫ t

0
(Hn

s −Hn
s
′) dWs)2 =

E
∫ t

0
(Hn

s −Hn
s
′)2 ds → 0, or the limit is independent of which sequence Hn we choose. It

is easy to see, because of the L2 convergence, that Nt is a martingale, E N2
t = E

∫ t

0
H2

s ds,
and 〈N〉t =

∫ t

0
H2

s ds. Because supt[
∫ t

0
Hn

s dWs−Nt] → 0 in L2, one can show there exists
a subsequence such that the convergence takes place almost surely. So with probability
one, Nt has continuous paths. We write Nt =

∫ t

0
Hs dWs and call Nt the stochastic integral

of H with respect to W .

We discuss some extensions of the definition. First of all, if we replace Wt by a
continuous martingale Mt and Hs is adapted with E

∫ t

0
H2

s d〈M〉s < ∞, we can dupli-
cate everything we just did with ds replaced by d〈M〉s and get a stochastic integral. In
particular, if d〈M〉s = K2

s ds, we replace ds by K2
s ds.

There are some other extensions of the definition that are not hard. If
∫∞
0

H2
s 〈M〉s <

∞ but without the expectation being finite, we can define the stochastic integral by looking
at Mt∧TN

for suitable stopping times TN and then letting TN →∞.
A process At is of bounded variation if the paths of At have bounded variation. This

means that one can write At = A+
t −A−

t , where A+
t and A−

t have paths that are increasing.
|A|t is then defined to be A+

t + A−
t . A semimartingale is the sum of a martingale and a

process of bounded variation. If
∫∞
0

H2
s d〈M〉s +

∫∞
0
|Hs| |dAs| < ∞ and Xt = Mt + At,

we define ∫ t

0

Hs dXs =
∫ t

0

Hs dMs +
∫ t

0

Hs dAs,

where the first integral on the right is a stochastic integral and the second is a Riemann-
Stieltjes or Lebesgue-Stieltjes integral. For a semimartingale, we define 〈X〉t = 〈Mt〉.

Given two semimartingales X and Y we define 〈X, Y 〉t by what is known as polar-
ization:

〈X, Y 〉t = 1
2 [〈X + Y 〉t − 〈X〉t − 〈Y 〉t].
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As an example, if Xt =
∫ t

0
HsdWs and Yt =

∫ t

0
KsdWs, then (X +Y )t =

∫ t

0
(Hs +Ks)dWs,

so

〈X + Y 〉t =
∫ t

0

(Hs + Ks)2ds =
∫ t

0

H2
s ds +

∫ t

0

2HsKsds +
∫ t

0

K2
s ds.

Since 〈X〉t =
∫ t

0
H2

s ds with a similar formula for 〈Y 〉t, we conclude

〈X, Y 〉t =
∫ t

0

HsKsds.

What does a stochastic integral mean? If one thinks of the derivative of Zt as being
a white noise, then

∫ t

0
HsdZs is like a filter that increases or decreases the volume by a

factor Hs.
For us, an interpretation is that Zt represents a stock price. Then

∫ t

0
HsdZs repre-

sents our profit (or loss) if we hold Hs shares at time s. This can be seen most easily if
Hs = G1[a,b]. So we buy G(ω) shares at time a and sell them at time b. The stochastic
integral represents our profit or loss.

Since we are in continuous time, we are allowed to buy and sell continuously and
instantaneously. What we are not allowed to do is look into the future to make our
decisions, which is where the Hs adapted condition comes in.

12. Ito’s formula.
Suppose Wt is a Brownian motion and f : R → R is a C2 function, that is, f and its

first two derivatives are continuous. Ito’s formula, which is sometime known as the change
of variables formula, says that

f(Wt)− f(W0) =
∫ t

0

f ′(Ws)ds + 1
2

∫ t

0

f ′′(Ws)ds.

Compare this with the fundamental theorem of calculus:

f(t)− f(0) =
∫ t

0

f ′(s)ds.

In Ito’s formula we have a second order term to carry along.
The idea behind the proof is quite simple. By Taylor’s theorem.

f(Wt)− f(W0) =
n−1∑
i=0

[f(W(i+1)t/n)− f(Wit/n)]

≈
n−1∑
i=1

f ′(Wit/n)(W(i+1)t/n −Wit/n)

+ 1
2

n−1∑
i=0

f ′′(Wit/n)(W(i+1)t/n −Wit/n)2.
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The first sum on the right is approximately the stochastic integral and the second is
approximately the quadratic variation.

For a more general semimartingale Xt = Mt + At, Ito’s formula reads

Theorem 12.1. If f ∈ C2, then

f(Xt)− f(X0) =
∫ t

0

f ′(Xs)dXs + 1
2

∫ t

0

f ′′(Xs)d〈M〉s.

Let us look at an example. Let Wt be Brownian motion, Xt = σWt − σ2t/2, and
f(x) = ex. Then 〈X〉t = 〈σW 〉t = σ2t and

eσWt−σ2t/2 = 1 +
∫ t

0

eXsσdWs − 1
2

∫ t

0

eXs 1
2σ2ds (12.1)

+ 1
2

∫ t

0

eXsσ2ds

= 1 +
∫ t

0

eXsσdWs.

For a semimartingale Xt = Mt+At we set 〈X〉t = 〈M〉t. Given two semimartingales
X, Y , we define

〈X, Y 〉t = 1
2 [〈X + Y 〉t − 〈X〉t − 〈Y 〉t].

Proposition 12.2.

XtYt = X0Y0 +
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X, Y 〉t.

Proof. Applying Ito’s formula with f(x) = x2 to Xt + Yt, we obtain

(Xt + Yt)2 = (X0 + Y0)2 + 2
∫ t

0

(Xs + Ys)(dXs + dYs) + 〈X + Y 〉t.

Applying Ito’s formula with f(x) = x2 to X and to Y , then

X2
t = X2

0 + 2
∫ t

0

XsdXs + 〈X〉t

and

Y 2
t = Y 2

0 + 2
∫ t

0

YsdYs + 〈Y 〉t.
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Then some algebra and the fact that

XtYt = 1
2 [(Xt + Yt)2 −X2

t − Y 2
t ]

yields the formula.

There is a multidimensional version of Ito’s formula: if Xt = (X1
t , . . . , Xd

t ) is a
vector, each component of which is a semimartingale, and f ∈ C2, then

f(Xt)− f(X0) =
d∑

i=1

∫ t

0

∂f

∂xi
(Xs)dXi

s) + 1
2

d∑
i,j=1

∫ t

0

∂2f

∂x2
i

(Xs)d〈Xi, Xj〉s.

The following application of Ito’s formula, known as Lévy’s theorem, is important.

Theorem 12.3. Suppose Mt is a continuous martingale with 〈M〉t = t. Then Mt is a

Brownian motion.

Before proving this, recall from undergraduate probability that the moment generating
function of a r.v. X is defined by mX(a) = E eaX and that if two random variables have
the same moment generating function, they have the same law. This is also true if we
replace a by iu. In this case we have ϕX(u) = E eiuX and ϕX is called the characteristic
function of X. The reason for looking at the characteristic function is that ϕX always
exists, whereas mX(a) might be infinite. The one special case we will need is that if X is
a normal r.v. with mean 0 and variance t, then ϕX(u) = e−u2t/2. This follows from the
formula for mX(a) with a replaced by iu (this can be justified rigorously).

Proof. Apply Ito’s formula with f(x) = eiux. Then

eiuMt = 1 +
∫ t

0

iueiuMsdMs + 1
2

∫ t

0

(−u2)eiuMsd〈M〉s.

Taking expectations and using 〈M〉s = s and the fact that a stochastic integral is a
martingale, hence has 0 expectation, we have

E eiuMt = 1− u2

2

∫ t

0

eiuMsds.

Let J(t) = E eiuMt . The equation can be rewritten

J(t) = 1− u2

2

∫ t

0

J(s)ds.

So J ′(t) = − 1
2u2J(t) with J(0) = 1. The solution to this elementary ODE is J(t) =

e−u2t/2, which shows that Mt is a mean 0 variance t normal r.v.
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If A ∈ Fs and we do the same argument with Mt replaced by Ms+t −Ms, we have

eiu(Ms+t−Ms) = 1 +
∫ t

0

iueiu(Ms+r−Ms)dMr + 1
2

∫ t

0

(−u2)eiu(Ms+r−Ms)d〈M〉r.

Multiply this by 1A and take expectations. Since a stochastic integral is a martingale, the
stochastic integral term again has expectation 0. If we let K(t) = E [eiu(Mt+s−Mt);A], we
now arrive at K ′(t) = − 1

2u2K(t) with K(0) = P(A), so

K(t) = P(A)e−u2t/2.

Therefore
E

[
eiu(Mt+s−Ms);A

]
= E eiu(Mt+s−Ms)P(A). (12.2)

If f is a nice function and f̂ is its Fourier transform, replace u in the above by −u,
multiply by f̂(u), and integrate over u. (To do the integral, we approximate the integral
by a Riemann sum and then take limits.) We then have

E [f(Ms+t −Ms);A] = E [f((Ms+t −Ms)]P(A).

By taking limits we have this for f = 1B , so

P(Ms+t −Ms ∈ B,A) = P(Ms+t −Ms ∈ B)P(A).

This implies that Ms+t −Ms is independent of Fs.
Note Var (Mt −Ms) = t− s; take A = Ω in (12.2).

13. The Girsanov theorem.
Suppose P is a probability measure and

dXt = dWt + µ(Xt)dt.

Let

Mt = exp
(
−

∫ t

0

µ(Xs)dWs −
∫ t

0

µ(Xs)2ds/2
)
.

Then as we have seen before, by Ito’s formula, Mt is a martingale.
Now let us define a new probability by setting

Q(A) = E [Mt;A] (13.1)

if A ∈ Ft. We had better be sure this Q is well defined. If A ∈ Fs ⊂ Ft, then E [Mt;A] =
E [Ms;A] because Mt is a martingale.

What the Girsanov theorem says is
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Theorem 13.1. Under Q, Xt is a Brownian motion.

There is a more general version.

Theorem 13.2. If Xt is a martingale under P, then under Q the process Xt − Dt is a

martingale where

Dt =
∫ t

0

1
Ms

d〈X, M〉s.

〈X〉t is the same under both P and Q.

Let us see how Theorem 13.1 can be used. Let St be the stock price, and suppose

dSt = σStdWt + µStdt.

Define
Mt = e(−µ/σ)(Wt)−(µ2/2σ2)t.

Then from (12.1) Mt is a martingale and

Mt = 1 +
∫ t

0

(
− µ

σ

)
MsdWs.

Let Xt = Wt. Then

〈X, M〉t =
∫ t

0

(
− µ

σ

)
Msds = −

∫ t

0

Ms
µ

σ
ds.

Therefore ∫ t

0

1
Ms

d〈X, M〉s = −
∫ t

0

µ

σ
ds = −(µ/σ)t.

Define Q by (13.1). By Theorem 13.2, under Q the process W̃t = Wt + (µ/σ)t is a
martingale. Hence

dSt = σSt(dWt + (µ/σ)dt) = σStdW̃t,

or

St = S0 +
∫ t

0

σSsdW̃s

is a martingale. So we have found a probability under which the asset price is a martingale.
This means that Q is the risk-neutral probability, which we have been calling P.

Let us give another example of the use of the Girsanov theorem. Suppose Xt =
Wt + µt. We want to compute the probability that Xt exceeds the level a by time t0.

We first need the probability that a Brownian motion crosses a level a by time
t0. Any path that crosses a but is at level x < a at time t0 has a corresponding path
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determined by reflecting across level a at the first time the Brownian motion hits a; the
reflected path will end up at a+(a−x) = 2a−x. This is known as the reflection principle,
and can be written, informally, by

P(sup
s≤t0

Ws ≥ a,Wt0 = x) = P(Wt0 = 2a− x).

Now let Wt be a Brownian motion under P. Let dQ/dP = Mt = eµWt−µ2t/2. Let
Yt = Wt − µt. Theorem 13.1 says that under Q, Yt is a Brownian motion. We have
Wt = Yt + µt.

Let A = (sups≤t0 Ws ≥ a). We want to calculate

P(sup
s≤t0

(Ws + µs) ≥ a).

Wt is a Brownian motion under P while Yt is a Brownian motion under Q. So this proba-
bility is equal to

Q(sup
s≤t0

(Ys + µs) ≥ a).

This in turn is equal to
Q(sup

s≤t0

Ws ≥ a) = Q(A).

Now we use the expression for Mt:

Q(A) = E P[eµWt0−µ2t0/2;A]

=
∫ ∞

−∞
eµx−µ2t0/2P(sup

s≤t0

Ws ≥ a,Wt0 = x)dx

= e−µ2t0/2
[ ∫ a

−∞

1√
2πt0

eµxe−(2a−x)2/2t0 dx +
∫ ∞

a

1√
2πt0

eµxe−x2/2t0 dx.
]

Now for the proofs of Theorems 13.1 and 13.2.

Proof of Theorem 13.2. Assume without loss of generality that X0 = 0. Then if A ∈ Fs,

E Q[Xt;A] = E P[MtXt;A]

= E P

[ ∫ t

0

Mr dXr;A
]

+ E P

[ ∫ t

0

Xr dMr;A
]

+ E P[〈X, M〉t;A]

= E P

[ ∫ s

0

Mr dXr;A
]

+ E P

[ ∫ s

0

Xr dMr;A
]

+ E P[〈X, M〉t;A]

= E Q[Xs;A] + E [〈X, M〉t − 〈X, M〉s;A].

Here we used the fact that stochastic integrals with respect to the martingales X and M

are again martingales.
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On the other hand,

E P [〈X, M〉t − 〈X, M〉s;A] = E P

[ ∫ t

s

d〈X, M〉r;A
]

= E P

[ ∫ t

s

Mr dDr;A
]

= E P

[ ∫ t

s

E P[Mt | Fr] dDt;A
]

= E P

[ ∫ t

s

Mt dDr;A
]

= E P[(Dt −Ds)Mt;A]

= E Q[Dt −Ds;A].

The quadratic variation proof is similar.

Proof of Theorem 13.1. From our formula for M we have dMt = −Mtµ(Xt)dWt, so
d〈X, M〉t = −Mtµ(Xt)dt. Hence by Theorem 13.2 we see that under Q, Xt is a continuous
martingale with 〈X〉t = t. By Lévy’s theorem, this means that X is a Brownian motion
under Q.

To help understand what is going on, let us give another proof of Theorem 13.1
along the lines of the proof of Theorem 13.2.

Proof of Theorem 13.1, second version. Using Ito’s formula with f(x) = ex,

Mt = 1−
∫ t

0

µ(Xr)MrdWr.

So

〈W,M〉t = −
∫ t

0

µ(Xr)Mr dr.

Since Q(A) = E P[Mt;A], it is not hard to see that

E Q[Wt;A] = E P[MtWt;A].

By Ito’s product formula this is

E P

[ ∫ t

0

MrdWr;A
]

+ E P

[ ∫ t

0

WrdMr;A
]

+ E P

[
〈W,M〉t;A

]
.

Since
∫ t

0
MrdWr and

∫ t

0
WrdMr are stochastic integrals with respect to martingales, they

are themselves martingales. Thus the above is equal to

E P

[ ∫ s

0

MrdWr;A
]

+ E P

[ ∫ s

0

WrdMr;A
]

+ E P

[
〈W,M〉t;A

]
.
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Using the product formula again, this is

E P[MsWs;A] + E P[〈W,M〉t − 〈W,M〉s;A] = E Q[Ws;A] + E P[〈W,M〉t − 〈W,M〉s;A].

The last term on the right is equal to

E P

[ ∫ t

s

d〈W,M〉r;A
]

= E P

[
−

∫ t

s

Mrµ(Xr)dr;A
]

= E P

[
−

∫ t

s

E [Mt | Fr]µ(Xr)dr;A
]

= E P

[
−

∫ t

s

Mtµ(Xr)dr;A
]

= E Q

[
−

∫ t

s

µ(Xr)dr;A
]

= −E Q

[ ∫ t

0

µ(Xr) dr;A
]

+ E Q

[ ∫ s

0

µ(Xr) dr;A
]
.

Therefore

E Q

[
Wt +

∫ t

0

µ(Xr)dr;A
]

= E Q

[
Ws +

∫ s

0

µ(Xr)dr;A
]
,

which shows Xt is a martingale with respect to Q.
Similarly, X2

t − t is a martingale with respect to Q. By Lévy’s theorem, Xt is a
Brownian motion.

14. Stochastic differential equations.
Let Wt be a Brownian motion. We are interested in the existence and uniqueness

for stochastic differential equations (SDEs) of the form

dXt = σ(Xt) dWt + b(Xt) dt, X0 = 0.

This means Xt satisfies

Xt = x0 +
∫ t

0

σ(Xs) dWs +
∫ t

0

b(Xs) ds. (14.1)

Here Wt is a Brownian motion, and (14.1) holds for almost every ω.
We have to make some assumptions on σ and b. We assume they are Lipschitz,

which means:

|σ(x)− σ(y)| ≤ c|x− y|, |b(x)− b(y)| ≤ c|x− y|

for some constant c. We also suppose that σ and b grow at most linearly, which means:

|σ(x)| ≤ c(1 + |x|), |b(x)| ≤ c(1 + |x|).
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Theorem 14.1. There exists one and only one solution to (14.1).

The idea of the proof is Picard iteration, which is how existence and uniqueness
for ordinary differential equations is proved. Let us illustrate the uniqueness part, and for
simplicity, assume b is identically 0.

Proof of uniqueness. If X and Y are two solutions,

Xt − Yt =
∫ t

0

[σ(Xs)− σ(Ys)]dWs.

So

E |Xt − Yt|2 = E
∫ t

0

|σ(Xs)− σ(Ys)|2ds ≤ c

∫ t

0

E |Xs − Ys|2ds,

using the Lipschitz hypothesis on σ. If we let g(t) = E |Xt − Yt|2, we have

g(t) ≤ c

∫ t

0

g(s) ds.

Then

g(t) ≤ c

∫ t

0

[
c

∫ s

0

g(r) dr
]
ds.

g is easily seen to be bounded on finite intervals, and iteration implies

g(t) ≤ Atn/n!

for each n, which implies g must be 0.

The above theorem also works in higher dimensions. We want to solve

dXi
t =

d∑
j=1

σij(Xs)dW j
s + bi(Xs)ds, i = 1, . . . , d.

If all of the σij and bi are Lipschitz and grow at most linearly, we have uniqueness for the
solution.

Suppose one wants to solve

dZt = aZt dWt + bZt dt.

Note that this equation is linear in Zt, and it turns out that linear equations are almost
the only ones that have an explicit solution. In this case we can write down the explicit
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solution and then verify that it satisfies the SDE. The uniqueness result shows that we
have in fact found the solution.

Let
Zt = Z0e

aWt−a2t/2+bt.

We will verify that this is correct by using Ito’s formula. Let Xt = aWt−a2t/2+ bt. Then
Xt is a semimartingale with martingale part aWt and 〈X〉t = a2t. Zt = eXt . By Ito’s
formula with f(x) = ex,

Zt = Z0 +
∫ t

0

eXsdXs + 1
2

∫ t

0

eXsa2ds

= Z0 +
∫ t

0

aZsdWs −
∫ t

0

a2

2
Zsds +

∫ t

0

b ds

+ 1
2

∫ t

0

a2Zsds

=
∫ t

0

aZsdWs +
∫ t

0

bZsds.

This is the integrated form of the equation we wanted to solve.

If we let Xx
t denote the solution to

Xx
t = x +

∫ t

0

σ(Xx
s )dWs +

∫ t

0

b(Xx
s )ds,

so that Xx
t is the solution of the SDE started at x, we can define new probabilities by

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) = P(Xx
t1 ∈ A1, . . . , X

x
tn
∈ An).

This is similar to what we did in defining Px for Brownian motion, but here we do not have
translation invariance. One can show that when there is uniqueness, the family (Px, Xt)
satisfies the strong Markov property.

15. Continuous time financial models.
The most common model by far in finance is that the security price is based on a

Brownian motion. One does not want to say the price is some multiple of Brownian motion
for two reasons. First, of all, a Brownian motion can become negative, which doesn’t make
sense for stock prices. Second, if one invests $1,000 in a stock selling for $1 and it goes
up to $2, one has the same profit as if one invests $1,000 in a stock selling for $100 and it
goes up to $200. It is the proportional increase one wants.

Therefore one sets ∆St/St to be the quantity related to a Brownian motion. Differ-
ent stocks have different volatilities σ (consider a high-tech stock versus a pharmaceutical).
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In addition, one expects a mean rate of return µ on ones investment that is positive (oth-
erwise, why not just put the money in the bank?). In fact, one expects the mean rate
of return to be higher than the risk-free interest rate r because one expects something in
return for undertaking risk.

So the model that is used is to let the stock price be modeled by the SDE

dSt/St = σdWt + µdt,

or what looks better,
dSt = σStdWt + µStdt. (15.1)

Fortunately this SDE is one of those that can be solved explicitly.

Proposition 15.1. The solution to (15.1) is given by

St = S0e
σWt+(µ−(σ2/2)t). (15.2)

Proof. Using Theorem 14.1 there will only be one solution, so we need to verify that St

as given in (15.2) satisfies (15.1). We already did this, but it is important enough that we
will do it again. Let us first assume S0 = 1. Let Xt = σWt + (µ− (σ2/2)t, let f(x) = ex,
and apply Ito’s formula. We obtain

St = eXt = eX0 +
∫ t

0

eXsdXs + 1
2

∫ t

0

eXsd〈X〉s

= 1 +
∫ t

0

SsσdWs +
∫ t

0

Ss(µ− 1
2σ2)ds

+ 1
2

∫ t

0

Ssσ
2ds

= 1 +
∫ t

0

SsσdWs +
∫ t

0

Ssµds,

which is (15.1). If S0 6= 0, just multiply both sides by S0.

If one purchases ∆0 shares (possibly a negative number) at time t0, then changes
the investment to ∆1 shares at time t1, etc., then ones wealth at time t will be

Xt0 + ∆0(St1 − St0) + ∆1(St2 − St1) + · · ·+ ∆i(Sti+1 − Sti
).

But this is the same as

Xt0 +
∫ t

0

∆(s)dSs,
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where we have t ≥ ti+1 and ∆(s) = ∆i if ti ≤ s < ti+1. In other words, our wealth is
given by a stochastic integral with respect to the stock price. The requirement that the
integrand of a stochastic integral be adapted is very natural: we cannot base the number
of shares we own at time s on information that will not be available until the future.

The continuous time model of finance is then that the security price is given by
(15.1) (often called geometric Brownian motion), that there are no transaction costs, but
one can trade as many shares as one wants and vary the amount held in a continuous
fashion. This clearly is not the way the market actually works, for example, stock prices
are discrete, but this model has proved to be a very good one.

16. Martingale representation theorem.
In this section we want to show that every random variable that is Ft measurable

can be written as a stochastic integral of Brownian motion. In the next section we use
this to show that under the model of geometric Brownian motion the market is complete.
This means that no matter what option one comes up with, one can exactly replicate the
result (no matter what the market does) by buying and selling shares of stock.

In mathematical terms, we let Ft be the σ-field generated by Ws, s ≤ t. From (15.2)
we see that Ft is also the same as the σ-field generated by Ss, s ≤ t, so it doesn’t matter
which one we work with. We want to show that if V is Ft measurable, then there exists
Hs adapted such that

V = V0 +
∫

HsdWs, (16.1)

where V0 is a constant.
We first need the following.

Proposition 16.1. Suppose

V n
t = V n

0 +
∫ t

0

Hn
s dWs

and

E |V n
t − Vt|2 → 0

for each t with the Hn adapted. Then there exists Hs adapted so that

Vt = V0 +
∫ t

0

HsdWs.

What this proposition says is that if we can duplicate a sequence of options Vn and Vn → V ,
then we can duplicate V .
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Proof. By our assumptions,

E |(V n
t − V n

0 )− (V m
t − V m

0 )|2 → 0

as n, m →∞. So

E
∣∣∣∫ t

0

(Hn
s −Hm

s )dWs

∣∣∣2 → 0.

From our formulas for stochastic integrals, this means

E
∫ t

0

|Hn
s −Hm

s |2ds → 0.

This says that Hn
s is a Cauchy sequence in the space L2 (with respect to the norm ‖ · ‖H

given in Section 11). We will assume that you know that L2 is complete or are willing to
believe it, so there exists Hs such that

E
∫ t

0

|Hn
s −Hs|2ds → 0.

In particular Hn
s → Hs, and this implies Hs is adapted.

Let Ut =
∫ t

0
HsdWs. Then as above,

E |(V n
t − V n

0 )− Ut|2 = E
∫ t

0

(Hn
s −Hs)2ds → 0.

Therefore Ut = Vt − V0, and U has the desired form.

Next we show our result for a particular collection of options.

Proposition 16.2. If g is bounded,

g(Wt) = c +
∫ t

0

HsdWs

for an integrand Hs that is adapted and some constant c.

Proof. By Ito’s formula with Xs = −iuWs + u2s/2 and f(x) = ex,

eXt = 1 +
∫ t

0

eXs(−iu)dWs +
∫ t

0

eXs(u2/2)ds

+ 1
2

∫ t

0

eXs(−iu)2ds

= 1− iu

∫ t

0

eXsdWs.
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If we multiply both sides by e−u2t/2, which is a constant and hence adapted, we obtain

e−iuWt = cu +
∫ t

0

Hu
s dWs (16.2)

for an appropriate constant cu and integrand Hu.
If f is a smooth function (e.g., C∞ with compact support), then its Fourier trans-

form f̂ will also be very nice. So if we multiply (16.2) by f̂(u) and integrate over u from
−∞ to ∞, we obtain

f(Wt) = c +
∫ t

0

HsdWs

for some constant c and some adapted integrand H. (We implicitly used Proposition 16.1,
because we approximate our integral by Riemann sums, and then take a limit.) Now using
Proposition 16.1 we take limits and obtain the proposition.

An almost identical proof shows that if f is bounded, then

f(Wt −Ws) = c +
∫ t

s

HrdWr

for some c and Hr.

Theorem 16.3. If V is Ft measurable and E V 2 < ∞, then there exists a constant c and

an adapted integrand Hs such that

V = c +
∫ t

0

HsdWs.

Proof. We will show that all V of the form

V = f1(Wt1 −Wt0)f2(Wt2 −Wt1) · · · fn(Wtn −Wtn−1)

can be so represented. If we take linear combinations of these, then the linear combinations
can also be so represented. Since every V that is Ft measurable can be written as a limit
of such linear combinations, Proposition 16.1 then implies the result.

The argument is by induction; let us do the case n = 2 for clarity. So we suppose

V = f(Wt)g(Wu −Wt).

From Proposition 16.2 we now have that

f(Wt) = c +
∫ t

0

HsdWs, g(Wu −Wt) = d +
∫ u

t

KsdWs.
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Set Hr = Hr if 0 ≤ s < t and 0 otherwise. Set Kr = Kr if s ≤ r < t and 0 otherwise. Let
Xs = c +

∫ s

0
HrdWr and Ys = d +

∫ s

0
KrdWr. Then

〈X, Y 〉s =
∫ s

0

HrKrdr = 0.

Then by the Ito product formula,

XsYs = X0Y0 +
∫ s

0

XrdYr +
∫ s

0

YrdXr

+ 〈X, Y 〉s

= cd +
∫ s

0

[XrKr + YrHr]dWr.

If we now take s = u, that is exactly what we wanted. Note that XrKr + YrHr is 0 if
r > u; this is needed to do the general induction step.

17. Completeness.
Now let St be a geometric Brownian motion. As we mentioned in the last section,

if St = S0 exp(σWt + (µ− σ2/2)t), then given St we can determine Wt and vice versa, so
the σ fields generated by St and Wt are the same. Recall St satisfies

dSt = σStdWt + µStdt.

Define a new probability P by

dP
dP

= Mt = exp(aWt − a2t/2).

By the Girsanov theorem,
W̃t = Wt − at

is a Brownian motion under P. So

dSt = σStdW̃t + σStadt + µStdt.

If we choose a = −µ/σ, we then have

dSt = σStdW̃t. (17.1)

Since W̃t is a Brownian motion under P, then St must be a martingale, since it is a
stochastic integral of a Brownian motion. We can rewrite (17.1) as

dW̃t = σ−1S−1
t dSt. (17.2)
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Given a Ft measurable variable V , we know by Theorem 16.3 that there exists
adapted Hs such that

V = c +
∫ t

0

HsdW̃s.

But then using (17.2) we have

V = c +
∫ t

0

Hsσ
−1S−1

s dSs.

We have therefore proved

Theorem 17.1. If St is a geometric Brownian motion and V is Ft measurable, then there

exist a constant c and an adapted process Ks such that

V = c +
∫ t

0

KsdSs.

Moreover, there is a probability P under which St is a martingale.

The probability P is called the risk-neutral measure. Under P the stock price is a
martingale.

18. Black-Scholes formula, I.
We can now derive the formula for the price of any option. If V is Ft measurable,

we have by Theorem 17.1 that

V = c +
∫ t

0

KsdSs, (18.1)

and under P, the process Ss is a martingale.

Theorem 18.1. The price of V must be E V .

Proof. This is the “no arbitrage” principle again. Suppose the price of the option V at
time 0 is W . Starting with 0 dollars, we can sell the option V for W dollars, and use the
W dollars to buy and trade shares of the stock. In fact, if we use c of those dollars, and
invest according to the strategy of holding Ks shares at time s, then at time t we will have

ert(W0 − c) + V

dollars. At time t the buyer of our option exercises it and we use V dollars to meet that
obligation. That leaves us a profit of ert(W0 − c) if W0 > c, without any risk. Therefore
W0 must be less than or equal to c. If W0 < c, we just reverse things: we buy the option
instead of sell it, and hold −Ks shares of stock at time s. By the same argument, since
we can’t get a riskless profit, we must have W0 ≥ c, or W0 = c.
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Finally, under P the process St is a martingale. So taking expectations in (18.1),
we obtain

E V = c.

Note that there is a slight difference with the approach we used in the binomial
asset model. There we showed that (1 + r)−kSk was a martingale under P. We could do
the analogue to that here, but it is slightly simpler to make St a martingale under P and
to incorporate the interest rate into the definition of V . So, for example, in the case of
pricing a European call, we let

V = e−rt(St −K)+.

We can think of this as saying the value of V at time t is (St −K)+ in terms of the value
of the dollar at time t. In terms of present day dollars the value of V is e−rt(St −K)+.

The formula in the statement of Theorem 18.1. is amenable to calculation. Suppose
we have the standard European option, where V = e−rt(St − K)+. Recall that under P
the stock price satisfies

dSt = σStdW̃t,

where W̃t is a Brownian motion under P. So then

St = S0e
σW̃t−σ2t/2.

Hence

E V = E [e−rt(St −K)+] (18.2)

= E
[
e−rt[S0e

σW̃t−(σ2/2)t −K]+
]
.

We know the density of W̃t is just (2πt)−1e−y2/2, so we can do the calculations and end
up with the famous Black-Scholes formula:

W0 = xΦ(g(x, t))−Ke−rtΦ(h(x, t)),

where Φ(z) = 1√
2π

∫ z

−∞ e−y2/2 dy, x = S0,

g(x, t) =
log(x/K) + (r + σ2/2)t

σ
√

t
,

h(x, t) = g(x, t)− σ
√

t.
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It is of considerable interest that the final formula depends on σ but is completely
independent of µ. The reason for that can be explained as follows. Under P the process St

satisfies dSt = σStdW̃t, where W̃t is a Brownian motion. Therefore, similarly to formulas
we have already done,

St = S0e
σW̃t−σ2/2,

and there is no µ present here. (We used the Girsanov formula to get rid of the µ.) The
price of the option V is

E e−rt[St −K]+, (18.3)

which is independent of µ since St is. Therefore we can use this instead of (18.2), i.e., we
can assume µ is zero, and the calculations become much simpler.

19. Black-Scholes formula, II.
Here is a second approach to the Black-Scholes formula. This approach works for

European calls and several other options, but does not work in the generality that the first
approach does. On the other hand, it allows one to computes what the equivalent strategy
of buying or selling stock should be to duplicate the outcome of the given option.

Let Vt be the value of the portfolio and assume Vt = f(St, T − t) for all t, where f

is some function that is sufficiently smooth. We also want VT = (ST −K)+.
Recall Ito’s formula. The multivariate version is

f(Xt) = f(X0) +
∫ t

0

d∑
i=1

fxi
(Xs) dXi

s +
1
2

∫ t

0

d∑
i,j=1

fxixj
(Xs) d〈Xi, Xj〉s.

Here Xt = (X1
t , . . . , Xd

t ) and fxi
denotes the partial derivative of f in the xi direction,

and similarly for the second partial derivatives.
We apply this with d = 2 and Xt = (St, T − t). From the SDE that St solves,

〈X1〉t = σ2S2
t dt, 〈X2〉t = 0 (since T−t is of bounded variation and hence has no martingale

part), and 〈X1, X2〉t = 0. Also, dX2
t = −dt. Then

Vt − V0 = f(St, T − t)− f(S0, T − t) (19.1)

=
∫ t

0

fx(Su, T − u) dSu −
∫ t

0

fs(Su, T − u) du

+ 1
2

∫ t

0

σ2S2
ufxx(Su, T − u) du.

On the other hand,

Vt − V0 =
∫ t

0

au dSu +
∫ t

0

bu dβu. (19.2)
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Since the value of the portfolio is

Vt = atSt + btBt,

we must have
bt = (Vt − atSt)/βt. (19.3)

Also, recall
βt = β0e

rt. (19.4)

We must therefore have
at = fx(St, T − t) (19.5)

and

r[f(St, T − t)− Stfx(St, T − t)] = −fs(St, T − t) +
1
2
σ2S2

t fxx(St, T − t) (19.6)

for all t and all St. (19.6) leads to the parabolic PDE

fs = 1
2σ2x2fxx + rxfx − rf, (x, s) ∈ (0,∞)× [0, T ), (19.7)

and
f(x, 0) = (x−K)+. (19.8)

Solving this equation for f , f(x, T ) is what V0 should be, i.e., the cost of setting up the
equivalent portfolio. Equation (19.5) shows what the trading strategy should be. In the
next section we show how to solve this PDE.

20. Solving PDE.
Without going into the theory of PDE, let us look at how to solve some simple PDE

using probability. Let us consider

ft = afxx + bfx, f(x, 0) = g(x). (20.1)

Here f is a function of x and t, a and b are given functions of x and g is also given. The
above equation is known as the Cauchy problem.

Proposition 20.1. Let A =
√

2a and let Xt be the solution to

dXt = A(Xt)dWt + b(Xt)dt. (20.2)

The solution to the above equation is given by

f(x, t) = E xg(Xt).
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Proof. Fix t0 and let Mt = f(Xt, t0 − t). We first show Mt is a martingale. By Ito’s
formula,

dMs = fx(Xs, t0 − s)dXs − ft(Xs, t0 − s)ds + 1
2fxx(Xs, t0 − s)A2(Xs)ds (20.3)

= fx(Xs, t0 − s)A(Xs)dWs + fx(Xs, t0 − s)b(Xs)ds + 1
2fxx(Xs, t0 − s)A2(Xs)ds

− ft(Xs, t0 − s)ds.

Since f solves (20.1), then

dMt = fx(Xs, t0 − s)A(Xs)dWs,

which is a stochastic integral of a Brownian motion, hence a martingale.
Now E xM0 = f(x, t0) and E xMt0 = E xf(Xt0 , 0) = E xg(Xt0). Since martingales

have constant expectation,
f(x, t0) = E xg(Xt0).

Since t0 is arbitrary, the proposition is proved.

To solve the equation

ft = afxx + bfx + cf, f(x, 0) = g(x),

similar methods show that the solution is given by

f(x, t) = E x
[
g(Xt)e

∫ t

0
c(Xs)ds

]
,

where Xt is the solution to (20.2). (This is known as the Feynman-Kac formula.) To see
this, if we let

Nt = Mte

∫ t

0
c(Xs)ds

,

where Mt = f(Xt, t0 − t), then the Ito product formula yields

dNt = Mte

∫ t

0
c(Xs)ds

c(Xt)dt + e

∫ t

0
c(Xs)ds

dMt.

Using (20.3) and the fact that afxx + bfx + cf = 0, we see that that the dt term is 0 and
Nt is a martingale. Using E N0 = E Nt0 leads to the desired representation of the solution.

Let us look at an example:

ft = 1
2σ2x2fxx + rxfx − rf,
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which is the PDE that arises in Black-Scholes. Here a = 1
2σ2x2 so that A = σx, b = rx,

and c = −r. The SDE to be solved, then, is

dXt = σXtdWt + rXtdt, X0 = x.

We know the solution to this is

Xt = xeσWt−σ2t/2+rt.

Hence
f(x, t) = E x

[
g(Xt)e−rt

]
= E

[
e−rtg

(
xeσWt−σ2t/2+rt

)]
.

Since we know the density of Wt, we can get an explicit expression (as an integral) for
f(x, t).

21. The fundamental theorem of finance.
In Section 17, we showed there was a probability measure under which St was a

martingale. This is true very generally. Let St be the price of a security. We will suppose
St is a continuous semimartingale, and can be written St = Mt + At.

The NFLVR condition (“no free lunch with vanishing risk”) is that there do not
exist a fixed time T , ε, b > 0, and Hn (that are adapted and satisfy the appropriate
integrability conditions) such that∫ T

0

Hn(s) dSs > − 1
n

, a.s.

for all t and

P
( ∫ T

0

Hn(s) dSs > b
)

> ε.

Here T, b, ε do not depend on n. The condition says that one can with positive
probability ε make a profit of b and with a loss no larger than 1/n.

Q is an equivalent martingale measure if Q is a probability measure, Q is equivalent
to P, and St is a martingale under Q.

Theorem 21.1. If St is a continuous semimartingale and the NFLVR conditions holds,

then there exists an equivalent martingale measure Q.

The proof is rather technical and involves some heavy-duty measure theory, so we
will only point examine a part of it. Suppose that we happened to have St = Wt + f(t),
where f(t) is a deterministic function. To obtain the equivalent martingale measure, we
would want to let

Mt = e
−

∫ t

0
f ′(s)dWs−

∫ t

0
(f ′(s))2ds

.
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In order for Mt to make sense, we need f to be differentiable. A result from measure
theory says that if f is not differentiable, then we can find a subset A of [0,∞) such that∫ t

0
1A(s)ds = 0 but the amount of increase of f over the set A is positive. (This is not a

very precise statement.) Then if we hold Hs = 1A(s) shares at time s, our net profit is∫ t

0

HsdSs =
∫ t

0

1A(s)dWs +
∫ t

0

1A(s) df(s).

The second term would be positive since this is the amount of increase of f over the set
A. The first term is 0, since E (

∫ t

0
1A(s)dWs)2 =

∫ t

0
1A(s)2ds = 0. So our net profit is

nonrandom and positive, or in other words, we have made a net gain without risk. This
contradicts “no arbitrage.”

Sometime Theorem 21.1 is called the first fundamental theorem of asset pricing.
The second fundamental theorem is the following.

Theorem 21.2. The equivalent martingale measure is unique if and only if the market is

complete.

We will not prove this.

22. American puts.
The proper valuation of American puts is one of the important unsolved problems

in mathematical finance. Recall that a European put pays out (K − ST )+ at time T ,
while an American put allows one to exercise early. If one exercises an American put at
time t < T , one receives (K − St)+. Then during the period [t, T ] one receives interest,
and the amount one has is (K − St)+er(T−t). In today’s dollars that is the equivalent of
(K−St)+e−rt. One wants to find a rule, known as the exercise policy, for when to exercise
the put, and then one wants to see what the value is for that policy. Since one cannot look
into the future, one is in fact looking for a stopping time τ that maximizes

E e−rτ (K − Sτ )+.

There is no good theoretical solution to finding the stopping time τ , although good
approximations exist. We will, however, discuss just a bit of the theory of optimal stopping,
which reworks the problem into another form.

Let Gt denote the amount you will receive at time t. For American puts, we set

Gt = e−rt(K − St)+.

Our problem is to maximize E Gτ over all stopping times τ .
We first need
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Proposition 22.1. If S and T are bounded stopping times with S ≤ T and M is a

martingale, then

E [MT | FS ] = MS .

Proof. Let A ∈ FS . Define U by

U(ω) =
{

S(ω) if ω ∈ A,
T (ω) if ω /∈ A.

It is easy to see that U is a stopping time, so by Doob’s optional stopping theorem,

E M0 = E MU = E [MS ;A] + E [MT ;Ac].

Also,
E M0 = E MT = E [MT ;A] + E [MT ;Ac].

Taking the difference, E [MT ;A] = E [Ms;A], which is what we needed to show.

Given two supermartingales Xt and Yt, it is routine to check that Xt ∧ Yt is also a
supermartingale. Also, if Xn

t are supermartingales with Xn
t ↓ Xt, one can check that Xt

is again a supermartingale. With these facts, one can show that given a process such as
Gt, there is a least supermartingale larger than Gt.

So we define Wt to be a supermartingale (with respect to P, of course) such that
Wt ≥ Gt a.s for each t and if Yt is another supermartingale with Yt ≥ Gt for all t, then
Wt ≤ Yt for all t. We set τ = inf{t : Wt = Gt}. We will show that τ is the solution to the
problem of finding the optimal stopping time. Of course, computing Wt and τ is another
problem entirely.

Let
Tt = {τ : τ is a stopping time, t ≤ τ ≤ T}.

Let
Vt = sup

τ∈Tt

E [Gτ | Ft].

Proposition 22.2. Vt is a supermartingale and Vt ≥ Gt for all t.

Proof. The fixed time t is a stopping time in Tt, so Vt ≥ E [Gt | Ft] = Gt, or Vt ≥ Gt. so
we only need to show that Vt is a supermartingale.

Suppose s < t. Let π be the stopping time in Tt for which Vt = E [Gπ | Ft].
π ∈ Tt ⊂ Ts. Then

E [Vt | Fs] = E [Gπ | Fs] ≤ sup
τ∈Ts

E [Gτ | Fs] = Vs.
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Proposition 22.3. If Yt is a supermartingale with Yt ≥ Gt for all t, then Yt ≥ Vt.

Proof. If τ ∈ Tt, then since Yt is a supermartingale, we have

E [Yτ | Ft] ≤ Yt.

So
Vt = sup

τ∈Tt

E [Gτ | Ft] ≤ sup
τ∈Tt

E [Yτ | Ft] ≤ Yt.

What we have shown is that Wt is equal to Vt. It remains to show that τ is optimal.
There may in fact be more than one optimal time, but in any case τ is one of them. Recall
we have F0 is the σ-field generated by S0, and hence consists of only ∅ and Ω.

Proposiiton 22.4. τ is an optimal stopping time.

Proof. Since F0 is trivial, V0 = supτ∈T0
E [Gτ | F0] = supτ E [Gτ ]. Let σ be a stopping

time where the supremum is attained. Then

V0 ≥ E [Vσ | F0] = E [Vσ] ≥ E [Gσ] = V0.

Therefore all the inequalities must be equalities. Since Vσ ≥ Gσ, we must have Vσ = Gσ.
Since τ was the first time that Wt equals Gt and Wt = Vt, we see that τ ≤ σ. Then

E [Gτ ] = E [Vτ ] ≥ EVσ = E Gσ.

Therefore the expected value of Gτ is as least as large as the expected value of Gσ, and
hence τ is also an optimal stopping time.

The above representation of the optimal stopping problem may seem rather bizarre.
However, this procedure gives good usable results for some optimal stopping problems. An
example is where Gt is a function of just Wt.

23. Term structure.
We now want to consider the case where the interest rate is nondeterministic, that

is, it has a random component. To do so, we take another look at option pricing.
Let r(t) be the (random) interest rate at time t. Let

β(t) = e

∫ t

0
r(u)du
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be the accumulation factor. One dollar at time T will be worth 1/β(T ) in today’s dollars.
Let V = (ST −K)+ be the payoff on the standard European call option at time T

with strike price K, where St is the stock price. In today’s dollars it is worth, as we have
seen, V/β(T ). Therefore the price of the option should be

E
[ V

β(T )

]
.

We can also get an expression for the value of the option at time t. The payoff, in terms
of dollars at time t, should be the payoff at time T discounted by the interest or inflation
rate, and so should be

e
−

∫ T

t
r(u)du(ST −K)+.

Therefore the value at time t is

E
[
e
−

∫ T

t
r(u)du(ST −K)+ | Ft

]
= E

[ β(t)
β(T )

V | Ft

]
= β(t)E

[ V

β(T )
| Ft

]
.

From now on we assume we have already changed to the risk-neutral measure and
we write P instead of P.

A zero coupon bond with maturity date T pays $1 at time T and nothing before.
This is equivalent to an option with payoff value V = 1. So its price at time t, as above,
should be

B(t, T ) = β(t)E
[ 1
β(T )

| Ft

]
= E

[
e
−

∫ T

t
r(u)du | Ft

]
.

Let’s derive the SDE satisfied by B(t, T ). Let Nt = E [1/β(T ) | Ft]. This is a
martingale. By the martingale representation theorem,

Nt = E [1/β(T )] +
∫ t

0

HsdWs

for some adapted integrand Hs. So B(t, T ) = β(t)Nt. Here T is fixed. By Ito’s product
formula,

dB(t, T ) = β(t)dNt + Ntdβ(t)

= β(t)HtdWt + Ntr(t)β(t)dt

= β(t)HtdWt + B(t, T )r(t)dt,

and we thus have
dB(t, T ) = β(t)HtdWt + B(t, T )r(t)dt. (23.1)

We now discuss forward rates. If one holds T fixed and graphs B(t, T ) as a function
of t, the graph will not clearly show the behavior of r. One sometimes specifies interest
rates by what are known as forward rates.
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Suppose you want to borrow $1 at time T and repay it with interest at time T + ε.
At the present time we are at time t ≤ T . One can accomplish this by buying a zero
coupon bond with maturity date T and shorting (i.e., selling) B(t, T )/B(t, T + ε) zero
coupon bonds with maturity date T + ε. The value of the portfolio at time t is

B(t, T )− B(t, T )
B(t, T + ε)

B(t, T + ε) = 0.

At time T you receive $1. At time T + ε you pay B(t, T )/B(t, T + ε). The effective rate
of interest R over the time period T to T + ε is

eεR =
B(t, T )

B(t, T + ε)
.

Solving for R, we have

R =
log B(t, T )− log B(t, T + ε)

ε
.

We now let ε → 0. We define the forward rate by

f(t, T ) = − ∂

∂T
log B(t, T ). (23.2)

Sometimes interest rates are specified by giving f(t, T ) instead of B(t, T ) or r(t).
Let us see how to recover B(t, T ) from f(t, T ). Integrating, we have∫ T

t

f(t, u)du = −
∫ T

t

∂

∂u
log B(t, u)du = − log B(t, u) |u=T

u=t

= − log B(t, T ) + log B(t, t).

Since B(t, t) is the value of a zero coupon bond at time t which expires at time t, it is
equal to 1, and its log is 0. Solving for B(t, T ), we have

B(t, T ) = e
−

∫ T

t
f(t,u)du

. (23.3)

Next, let us show how to recover r(t) from the forward rates. We have

B(t, T ) = E
[
e
−

∫ T

t
r(u)du | Ft

]
.

Differentiating,
∂

∂T
B(t, T ) = E

[
− r(T )e−

∫ T

t
r(u)du | Ft

]
.

Evaluating this when T = t, we obtain

E [−r(t) | Ft] = r(t). (23.4)
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On the other hand, from (23.3) we have

∂

∂T
B(t, T ) = −f(t, T )e−

∫ T

t
f(t,u)du

.

Setting T = t we obtain −f(t, t). Comparing with (23.4) yields

r(t) = f(t, t). (23.5)

24. Some interest rate models.

Heath-Jarrow-Morton model

Instead of specifying r, the Heath-Jarrow-Morton model (HJM) specifies the forward
rates:

df(t, T ) = σ(t, T )dWt + α(t, T )dt. (24.1)

Let us derive the SDE that B(t, T ) satisfies. Let

α∗(t, T ) =
∫ T

t

α(t, u)du, σ∗(t, T ) =
∫ T

t

σ(t, u)du.

Since B(t, T ) = exp(−
∫ T

t
f(t, u)du), we derive the SDE for B by using Ito’s formula with

the function ex and Xt = −
∫ T

t
f(t, u)du. We have

dXt = f(t, t)dt−
∫ T

t

df(t, u)du

= r(t)dt−
∫ T

t

[α(t, u)dt + σ(t, u)dWt] du

= r(t)dt−
[ ∫ T

t

α(t, u)du
]
dt−

[ ∫ T

t

σ(t, u)du
]
dWt

= r(t)dt− α∗(t, T )dt− σ∗(t, T )dWt.

Therefore, using Ito’s formula,

dB(t, T ) = B(t, T )dXt + 1
2B(t, T )(σ∗(t, T ))2dt

= B(t, T )
[
r(t)− α∗ + 1

2 (σ∗)2
]
dt− σ∗B(t, T )dWt.

From (23.1)
dB(t, T ) = B(t, T )r(t)dt− σ∗B(t, T )dWt.

Comparing, we see that if P is the risk-neutral measure, we have α∗ = 1
2 (σ∗)2.
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If P is not the risk-neutral measure, it is still possible that one exists. Let θ(t) be a
function of t, let Mt = exp(−

∫ t

0
θ(u)dWu − 1

2

∫ t

0
θ(u)2du) and define P(A) = E [MT ;A] for

A ∈ FT . By the Girsanov theorem,

dB(t, T ) = B(t, T )
[
r(t)− α∗ + 1

2 (σ∗)2 + σ∗θ]dt− σ∗B(t, T )dW̃t,

where W̃t is a Brownian motion under P. So we must have

α∗ = 1
2 (σ∗)2 + σ∗θ.

Differentiating with respect to T , we obtain

α(t, T ) = σ(t, T )σ∗(t, T ) + σ(t, T )θ(t).

If we try to solve this equation for θ, there is no reason off-hand that θ depends only on t

and not T . However, if θ does not depend on T , P will be the risk-neutral measure.

Hull and White model

In this model, the interest rate r is specified as the solution to the SDE

dr(t) = σ(t)dWt + (a(t)− b(t)r(t))dt.

Here σ, a, b are deterministic functions. The stochastic integral term introduces random-
ness, while the a− br term causes a drift toward a(t)/b(t).

This is one of those SDE’s that can be solved explicitly. Let K(t) =
∫ t

0
b(u)du.

Then

d
[
eK(t)r(t)

]
= eK(t)r(t)b(t) + eK(t)

[
a(t)− b(t)r(t)

]
dt + eK(t)[σ(t)dWt]

= eK(t)a(t)dt + eK(t)[σ(t)dWt].

Integrating both sides,

eK(t)r(t) = r(0) +
∫ t

0

eK(u)a(u)du +
∫ t

0

eK(u)σ(u)dWu.

Multiplying both sides by e−K(t), we have the explicit solution

r(t) = e−K(t)
[
r(0) +

∫ t

0

eK(u)a(u)du +
∫ t

0

eK(u)σ(u)dWu

]
.

If F (u) is deterministic, then∫ t

0

F (u)dWu = lim
∑

F (ui)(Wui+1 −Wui
).
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Linear combinations of Gaussian r.v.’s (Gaussian = normal) are Gaussian, and limits of
Gaussian r.v.’s are Gaussian, so we conclude

∫ t

0
F (u)dWu is a Gaussian r.v. We see that

the mean at time t is

E r(t) = e−K(t)
[
r(0) +

∫ t

0

eK(u)a(u)du
]
.

We know how to calculate the second moment of a stochastic integral, so

Var r(t) = e−2K(t)

∫ t

0

e2K(u)σ(u)2du.

(One can similarly calculate the covariance of r(s) and r(t).) Limits of linear combinations
of Gaussians are Gaussian, so we can calculate the mean and variance of

∫ T

0
r(t)dt and get

an explicit expression for

B(0, T ) = E e
−

∫ T

0
r(u)du

.

Cox-Ingersoll-Ross model

One drawback of the Hull and White model is that since r(t) is Gaussian, it can take
negative values with positive probability, which doesn’t make sense. The Cox-Ingersoll-
Ross model avoids this by modeling r by the SDE

dr(t) = (a− br(t))dt + σ
√

r(t)dWt.

The difference from the Hull and White model is the square root of r in the stochastic
integral term. Provided a ≥ 1

2σ2, it can be shown that r(t) will never hit 0 and will always
be positive. Although one cannot solve for r explicitly, one can calculate the distribution
of r. It turns out to be related to the square of what are known in probability theory
as Bessel processes. (The density of r(t), for example, will be given in terms of Bessel
functions.)

25. Foreign exchange.
Suppose we can buy bonds in dollars with constant interest rate r. So the value

of the bond at time t is Bt = B0e
rt. Suppose we can buy bonds in pounds sterling with

constant rate u. If Dt is the price of the bond, then Dt = D0e
ut.

Let Ct be the exchange rate; at time t one pound is worth Ct dollars. Not surpris-
ingly, one model for exchange rates is to set

Ct = C0e
σWt−σ2t/2+µt,

where Wt is a Brownian motion.
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We want to see how to price options in terms of the exchange rate. There are two
main differences from the stock case. One is that if we buy pounds, we can invest them
in sterling bonds and receive interest. The other is that Ct is not a quantity that one can
invest in. One cannot buy an exchange rate.

Let St = CtDt. Start with with S0 = C0D0 dollars at time 0, exchange them
for S0/C0 pounds, and buy S0/(C0D0) sterling bonds. At time t redeem the bonds for
Dt pounds each and convert back to dollars. So at time t, you have CtDt = St dollars.
Therefore St is tradable, even if Ct is not.

The present value of St is e−rtSt = B−1
t St. Let us set Zt = B−1

t St. Substituting
for Ct and Dt, we have

Zt = e−rteuteσWt−σ2t/2+µt = eσWt−σ2t/2+(µ+u−r)t.

Let Mt = exp(−(µ + u− r)Wt − (µ + u− r)2t/2) and define Q(A) = E [Mt;A] if A ∈ Ft.
By what are now standard calculations, Zt is a martingale under Q.

Now let’s price options. For example, one might have a sterling call, which is the
right at time T to buy a pound for K dollars. The payoff at time T is V = (CT −K)+.
We use the martingale representation theorem, just as in the Black-Scholes derivation, to
write

VT = c +
∫ T

0

HsdZs.

Since Z is a martingale under Q, then c = E QV and this is the value of the call in today’s
dollars. H gives the hedging strategy: at time s hold Hs units of sterling bonds, and the
remainder, namely, Vs −HsZs, in dollar bonds.

Are the calculations hard? Not really – the situation looks exactly the same as the
case of stock prices, but the interest rate is now r − u instead of r. This makes sense; we
don’t discount by the rate r, because insteading of holding stocks, which pay no interest,
we hold sterling bonds, which pay at interest rate u.

One could also do all these calculations from the point of view of the English in-
vestor. He has the alternative of putting his pounds into sterling bonds, or else exchanging
them for dollars and investing in dollar bonds. The calculations are very similar.

It turns out that the martingale measure (Q) will be different for the American and
the English investor. Nevertheless, they will come up with the identical value for an option
and will have the identical hedging strategy.

26. Dividends.
How do things change if a stock issues dividends? Of course, typically a stock issues

dividends at fixed discrete times, but for the sake of our continuous model, let us assume
that the stock issues dividends at a continuous rate.
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There are two possibilities. One possibility is that the stock issues dividends at a
fixed rate, regardless of what the stock price is. This case is very similar to the foreign
exchange discussion: like the investor who exchanges his dollars for pounds and invests in
sterling bonds, the security purchased (sterling bonds in the foreign exchange case, stock
in the present case) pays interest.

So we will look at the other case, where we suppose that the stock issues dividends
at a rate proportional to the stock price. We suppose in a short time interval ∆t that the
amount of dividends issued is δSt∆t. Here δ is the dividend rate.

Suppose that as soon as we receive dividends, we immediately buy stock with it.
Our net gain in cash is then zero, but the number of shares we hold has increased. If St is
the stock price, we hold eδt times as many shares, so our investment in the stock is now

S̃t = eδtSt = eσWt−σ2t/2+µt+δt.

We are back in the standard stock model, except that our mean rate of return has become
µ + δ instead of µ. The Black-Scholes formulas are much as before.
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