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1 Introduction

Finance is one of the most rapidly changing and fastest growing areas in the
corporate business world. Because of this rapid change, modern financial
instruments have become extremely complex. New mathematical models are
essential to implement and price these new financial instruments. The world
of corporate finance once managed by business students is now controlled by
mathematicians and computer scientists.

In the early 1970’s, Myron Scholes, Robert Merton, and Fisher Black made
an important breakthrough in the pricing of complex financial instruments by
developing what has become known as the Black-Scholes model. In 1997, the
importance of their model was recognized world wide when Myron Scholes
and Robert Merton received the Nobel Prize for Economics. Unfortunately,
Fisher Black died in 1995, or he would have also received the award [Hull,
2000]. The Black-Scholes model displayed the importance that mathematics
plays in the field of finance. It also led to the growth and success of the new
field of mathematical finance or financial engineering.

In this paper, we will derive the Black-Scholes partial differential equation
and ultimately solve the equation for a European call option. First, we
will discuss basic financial terms, such as stock and option, and review the
arbitrage pricing theory. We will then derive a model for the movement of a
stock, which will include a random component, Brownian motion. Then, we
will discuss some basic concepts of stochastic calculus that will be applied to
our stock model. From this model, we will derive the Black-Scholes partial
differential equation, and I will use boundary conditions for a European call
option to solve the equation.
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2 Definitions

Financial assets are claims on some issuer, such as the federal government
or a corporation, such as Microsoft. Financial assets also include real assets
such as real estate, but we will be primarily concerned with common stock.
Common stock represents an ownership in a corporation. Stocks provide a
claim to the corporation’s income and assets. A person who buys a financial
asset in hopes that it will increase in value has taken a long position. A
person who sells a stock before he/she owns it hoping that it decreases in
value is said to be short an asset. People who take short positions borrow
the asset from large financial institutions, sell the asset, and buy the asset
back at a later time.

A derivative is a financial instrument whose value depends on the value
of other basic assets, such as common stock. In recent years, derivatives
have become increasingly complex and important in the world of finance.
Many individuals and corporations use derivatives to hedge against risk. The
derivative asset we will be most interested in is a European call option. A
call option gives the owner the right to buy the underlying asset on a certain
date for a certain price. The specified price is known as the exercise or strike
price and will be denoted by E. The specified date is known as the expiration
date or day until maturity. European options can be exercised only on the
expiration date itself. Another common option is a put option, which gives
the owner the right to sell the underlying asset on a certain date for a certain
price.

For example, consider a July European call option contract on Microsoft
with strike price $70. When the contract expires in July, if the price of
Microsoft stock is $72 the owner will exercise the option and realize a profit of
$2. He will buy the stock for $70 from the seller of the option and immediately
sell the stock for $72. On the other hand, if a share of Microsoft is worth
$69 the owner of the option will not exercise the option and it will expire
worthless. In this case, the buyer would lose the purchase price of the option.

3 Arbitrage

One of the most fundamental theories to the world of finance is the arbitrage
pricing theory. The theory states that two otherwise identical assets cannot
sell at different prices. This also means that there are no opportunities to
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make an instantaneous risk-free profit. Here we are assuming the risk-free
rate to be that of a bank account or a government bond, such as a Treasury
bill.

To illustrate the concept of arbitrage, consider a simple example of a stock
that is traded in the U.S. and in London. In the U.S. the price of the stock is
$150 and the asset sells for £100 in London, while the exchange rate is $1.60
per pound. A person could make an instantaneous profit by simultaneously
buying 100 shares of stock in New York and selling them in London. An
instantaneous profit of

100 ∗ (($1.60 ∗ 100)− $150) = $1000

is realized without risk.

4 Hedging

Three types of traders are attracted to derivative securities: speculators, arbi-
trageurs, and hedgers. Speculators take long or short positions in derivatives
to increase their exposure to the market. They are betting that the under-
lying asset will go up or go down. Arbitrageurs find mispriced securities
and instantaneously lock in a profit by adopting certain trading strategies
like those discussed above. The last group is hedgers who take positions in
derivative securities opposite those taken in the underlying asset in order to
help manage risk. For example, consider an investor who owns 100 shares of
Microsoft which is currently priced $62. The person is worried that the stock
might decline sharply in the next two months. The person could buy put
options on Microsoft to sell 100 shares at a price of $60. The person would
pay the price of the options, but this would ensure that he could sell the
stock for $60 at expiration if the stock declines sharply. One very important
hedging strategy is delta hedging. The delta, ∆, of the option is defined as
the change of the option price with respect to the change in the price of the
underlying asset. In other words, delta is the first derivative of the option
price with respect to the stock price:

∆ =
∂V

∂S
˙

For example, suppose that the delta of a call option is .60, the price of a
stock is $100 and the price of a call option is $10. Imagine an investor who
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has sold 1 call option. The call option gives the buyer the right to buy 100
shares, since each option contract is for 100 shares. The seller’s position
could be hedged by buying 0.6 ∗ 100 = 60 shares. The gain (loss) on the
option position would then tend to be offset by the loss (gain) on the stock
position. If the stock price goes up by $1 (producing a gain of $60 on the
shares purchased) the option price would tend to go up by 0.6 ∗ $1 = $0.6
(producing a loss of $0.6 * 100 = $60 on the call option written)[Hull, 2000].

5 Stock Price Model

Most people agree that stock prices move randomly because of the efficient
market hypothesis. There are different forms of this hypothesis, but all say
the same two things. First, the history of the stock is fully reflected in
the present price. Second, markets respond immediately to new information
about the stock. With the previous two assumptions, changes in a stock
price follow a Markov process. A Markov process is a stochastic process
where only the present value of the variable is relevant for predicting the
future. So, our stock model states that our predictions for the future price
of the stock should be unaffected by the price one week, one month, or one
year ago.

As stated above, a Markov process is a stochastic process. In the real
world, stock prices are restricted to discrete values, and changes in the stock
price can only be realized during specified trading hours. Nevertheless, the
continuous-variable, continuous-time model proves to more useful than a dis-
crete model.

Another important observation is to note that the absolute change in the
price of a stock is by itself, not a useful quality. For example, an increase of
one dollar in a stock is much more significant on a stock worth $10 than a
stock worth $100. The relative change of the price of a stock is information
that is more valuable. The relative change will be defined as the change in
the price divided by the original price.

Now consider the price of a stock S at time t. Consider a small time
interval dt during which the the price of the underlying asset S changes by
an amount dS. The most common model separates the return on the asset,
dS/S into two parts. The first part is completely deterministic, and it is
usually the risk free interest rate on a Treasury bill issued by the government.
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This part yields a contribution of

µdt

to dS/S. Here µ is a measure of the average rate of growth of the stock, also
known as the drift. In this model µ is assumed to be the risk free interest
rate on a bond, but it can also be represented as a function of S and t.
The second part of the model accounts for the random changes in the stock
price due to external effects, such as unanticipated news. It is best modelled
by a random sample drawn from a normal distribution with mean zero and
contributes

σdB

to dS/S. In this formula σ is defined as the volatility of the stock, which
measures the standard deviation of the returns. Like the term µ, σ can be
represented as a function of S and t. The B in dB denotes Brownian motion,
which will be described in the next section. It is important to note that µ and
σ can be estimated for individual stocks using statistical analysis of historical
prices. This is not of interest for our model. It is only important that µ and
σ are functions of S and t. Putting this information together, we obtain the
stochastic differential equation

dS/S = µdt+ σdB (1)

Notice that if the volatility is zero the model implies

dS/S = µdt

When µ is constant this equation can be solved so that

S = S0e
µt (2)

where S is the price of the stock at t and S0 is the price of the stock at t = 0.
This equation shows that when the variance of an asset is zero, the asset
grows at a continuously compunded rate of µ per unit of time.
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6 Brownian Motion

The term that has not been discussed so far is the random term, dB. Brow-
nian motion, which was originally used as a model for stock price movements
in 1900 by L. Bachelier[Klebaner, 1998], is a stochastic process B(t) charac-
terized by the following three properties:

1. Normal Increments: B(t)−B(s) has a normal distribution with mean
0 and variance t − s. Notice if s = 0 that B(t) − B(0) has normal
distribution with mean 0 and variance t.

2. Independence of Increments: B(t)−B(s) is independent of the past.

3. Continuity of Paths: B(t), t > 0 are continuous functions of t.

These three properties alone define Brownian motion, but they also show
why Brownian motion is used to model stock prices. Property 2 shows stock
price changes will be independent of past price movements. This was an
important assumption we made in our stock price model.

An occurence of Brownian motion from time 0 to T is called a path of the
process on the interval [0,T]. There are five important properties of Brownian
motion paths. The path B(t), 0 < t < T

1. is a continuous function of t,

2. is not monotonic on any interval, no matter how small the interval is,

3. is not differentiable at any point,

4. has infinite variation on any interval no matter how small it is,

5. has quadratic variation on [0,t] equal to t, for any t.

Together properties 1 and 3 state that although Brownian motion paths are
continuous, the ∆B(t) over interval ∆t is much larger than ∆t as ∆t →
0. Properties 4 and 5 show the distinction between functions of Brownian
motion and normal, smooth functions. The variation of a function over the
interval [a,b] is defined as

Vg([a, b]) = sup
n∑
i=1

|g(ti)− g(ti−1)
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where the supremum is taken over partitions:

a = t0 < t1 < ... < tn = b. (3)

It can be seen that smooth functions are of finite variation while Brownian
motion is of infinite variation. Quadratic variation plays a very important
role with Brownian motion and stochastic calculus. Quadratic variation is
defined for a function g over the interval [0,t] as

[g, g](t) = lim
n∑
i=1

(g(ti)− g(ti−1))2,

where the limit is taken over partitions:

0 = t0 < t1 < ... < tn = t. (4)

Quadratic variation plays no role in standard calculus due to the fact that
continuous functions of finite variation have quadratic variation of 0.

7 Stochastic Calculus

In this section I will introduce stochastic integrals with respect to Brownian
motion. These stochastic integrals are commonly called Itô integrals. In
order to procede with the derivation of the Black-Scholes formula we need
to define thestochastic integral

∫ T
0 X(t)dB(t). If X(t) is a constant, c, then∫ T

0 cdB(t) = c(B(T ) − B(0)). The integral over(0, T ] should be the sum of
integrals over subintervals [0, a1), (a1, a2), (a2, a3), ..., (an−1, T ]. So if X(t)
takes values ci on each subinterval then the integral of X with respect to B
is easily defined.

First we consider the integrals of simple processes e(t) which depend on t
and not on B(t). A simple deterministic process e(t) is a process for which
there exist times 0 = t0 < t1 < t2 < ... < tn = T and constants c0, c1, c2, cn−1,
such that

e(t) =

{
c0 if t = 0
ci if ti < t ≤ ti+1, i = 0, ..., n− 1.

Therefore, the Itô integral
∫ T

0 X(t)dB(t) is defined as the sum

∫ T

0
e(t)dB(t) =

n−1∑
i=0

ci(B(ti+1)−B(ti)).
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The Itô integral of simple processes is a random variable with the following
four properties.

1. Linearity. If X(t) and Y (t) are simple processes and α and β are
constants then∫ T

0
(αX(t) + βY (t))dB(t) = α

∫ T

0
X(t)dB(t) + β

∫ T

0
Y (t)dB(t).

2. The integral of the indicator function of an interval I[a,b](t) = 1 when
t ∈ [a, b], and zero otherwise is just B(b)−B(a), 0 < a < b < T ,∫ T

0
I[a,b](t)dB(t) = B(b)−B(a).

3. Zero mean property. E
∫ T

0 X(t)dB(t) = 0.

4. Isometry Property.

E

(∫ T

0
X(t)dB(t)

)2

=
∫ T

0
E(X2(t))dt.

The definition of the Itô integral can be extended to processes X(t) that
can be approximated by sequences en of simple processes in the sense that

E

(∫ T

0
|en(t)−X(t)|2dt

)
→ 0

as n→∞. In that case, we define∫ T

0
X(t)dB = lim

n→∞

∫ T

0
entdB.

This is a sound definition beecause the limit does not depend on the ap-
proximating sequence. Also the integral that arises this way still satisfies
properties 1-4 above.

Now that we have defined the Itô integral of simple processes we wish
to define Itô integral of other processes. It can be shown that if a general
predictable process satifies certain conditions, the eneral process is a limit
in probability of siple predictable processes we discussed earlier. The Itô
integral of general predictable processes is defined as a limit of integrals of
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simple processes. If X(t) is a predictable process such that
∫ T

0 X2(t)dt <∞
then the Itô integral

∫ T
0 X(t)dB(t) is defined and satisfies the above four

properties.
For example, we find the

∫ T
0 B(t)dB(t). We let 0 = t0 < t1 < t2 < ... <

tn = T be a partition of [0,T] then

en(t) =
n−1∑
i=0

B(ti)I[ti,ti+1](t).

Then for any n, en(t) is a simple process. We can take a sequence of the
partitions such that maxi(ti+1 − ti) → 0 as n → ∞. The Itô integral of this
simple function is given by

∫ T

0
en(t)dB(t) =

n−1∑
i=0

B(ti)(B(ti+1)−B(ti)).

We now show that this sequence of integrals converges in probability and
identify the limit. Adding and subtracting B2(ti+1), we obtain

B(ti)(B(ti+1)−B(ti)) =
1

2

(
B2(ti+1)−B2(ti)− (B(ti+1)−B(ti))

2
)
.

and∫ T

0
en(t)dB(t) =

1

2

n−1∑
i=0

(
B2(ti+1)−B2(ti)

)
− 1

2

n−1∑
i=0

(B(ti+1)−B(ti))
2(5)

=
1

2
B2(T )− 1

2
B2(0)− 1

2

n−1∑
i=0

(B(ti+1)−B(ti))
2 ,

since the first sum is a telescpopic sum. Notice that from property 5 of
Brownian motion patht the second sum converges to the limit T . Therefore,∫ T

0 en(t)dB(t) converges, and the limit is∫ T

0
B(t)dB(t) = lim

n→∞

∫ T

0
en(t)dB(t) =

1

2
B2(T )− 1

2
T.

This example illustrates the difference between deterministic calculus and
stochastic calculus. The quadratic variation of continuous functions, x(t),
of finite variation we work with in standard calculus is 0. Therefore, if we
were calculating the integral of

∫ T
0 x(t)dx(t) the same way as above the term
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∑n−1
i=0 (x(ti+1)− x(ti))

2 would converge to the limit 0. So the
∫ T

0 x(t)dx(t)
simply equals 1

2
x2(T ).

Now we need to discuss one of the main tools of stochastic calculus, Itô’s
formula, which is the stochastic counterpart of the chain rule in Calculus.
Recall that Brownian motion has quadratic variation on [0,t] equal to t, for
any t. This can also be expressed as the following∫ t

0
(dB(s))2 =

∫ t

0
ds = t or in differential notation (dB(t))2 = dt.

Using this property and applying Taylor’s formula, Itô’s formula states that
if f(x) is twice differentiable function then for any t

f(B(t)) = f(0) +
∫ t

0
f ′(B(s))dB(s) +

1

2

∫ t

0
f ′′(B(s))ds.

Note that Itô’s formula in differential notation becomes

d(f(B(t)) = f ′B(t))dB(t) +
1

2
f ′′(B(t))dt.

Next we define an Itô process. Let Y (t) be an Itô integral process

Y (t) =
∫ t

0
X(s)dB(s).

An Itô process is an Itô integral plus an adapted continuous process of finite
variation. Process Y is called an Itô process if for any 0 ≤ t ≤ T it can be
represented as

Y (t) = Y (0) +
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dBs.

More generally, if Y is an Itô process represented above then it has a stochas-
tic differential on [o, T ]

dY (t) = µ(t)dt+ σ(t)dB(t) (6)

for 0 ≤ t ≤ T . The function µ is often called the drift coefficient and the
function σ is called the diffusion coefficient.

One last very important case for us to consider is for functions of the
form f(X(t), t). If f(x, t) is a twice continuously differentiable in x, and
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continuously differentiable in t and X(t) represnets an Itô process, then

df(x(t), t) =
∂f

∂x
(X(t), t)dX(t) +

∂f

∂t
(X(t), t)dt (7)

+
1

2
σ2(X(t), t)

∂2f

∂x2
(X(t), t)dt.

We will use this case of Itô’s formula to compute the Black-Scholes partial
differential equation in the next section.

8 Derivation of the Equation

In the next two sections, the price of a derivative security, V (S, t) is derived.
The model for a stock we derived in section 5 satisfies a Itô process defined
in equation 6. Therefore, we let the function V (S, t) be twice differentiable
in S and differentiable in t. Applying equation 7 from above we have

dV (S, t) =
∂V

∂S
dS +

∂V

∂t
dt+

1

2
σ2S2∂

2V

∂S2
dt. (8)

Plugging into equation 8 for dS with Equation 1 we have

dV (S, t) =
∂V

∂S
(µSdt+ σSdB) +

∂V

∂t
dt+

1

2
σ2S2∂

2V

∂S2
dt.

This simplifies to

dV (S, t) = σSdB
∂V

∂S
+ (µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt. (9)

Now set up a portfolio long one option, V , and short an amount ∂V
∂S

stock.
Note from above that this portfolio is hedged. The value of this portfolio, π,
is

π = V − ∂V

∂S
S. (10)

The change, dπ, in the value of this portfolio over a small time interval dt is
given by

dπ = dV − ∂V

∂S
dS. (11)
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Now plugging equations 9 and 1 into equation 11 for dV and dS we get

dπ = σSdB
∂V

∂S
dB + (µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt

−∂V
∂S

(µSdt+ σSdB) (12)

This simplifies to

dπ = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt. (13)

It is important to note that this portfolio is completely riskless because it does
not contain the random Brownian motion term. Since this portfolio contains
no risk it must earn the same as other short-term risk-free securities. If it
earned more than this, arbitrageurs could make a profit by shorting the risk-
free securities and using the proceeds to buy this portfolio. If the portfolio
earned less arbitrageurs could make a riskless profit by shorting the portfolio
and buying the risk-free securities. It follows for a riskless portfolio that

dπ = rπdt (14)

where r is the risk free interst rate. Substituting for dπ and π from equations
13 and 10 yields

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt = r(V − S∂V

∂S
)dt. (15)

Further simplification yields the Black-Scholes differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂∂S − rV = 0. (16)

9 Solution for a European Call

In order to solve the Black-Scholes equation derived in the last section we
need to consider final and boundary conditions, or else the partial differential
equation does not have a unique solution. For this project we will concern
ourselves with a European call, C(S, t) with exercise price E and expiry date
T .
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The final condition at time t = T can be derived from the definition of
a call option. If at expiration S > E the call option will be worth S − E
because the buyer of the option can buy the stock for E and immediately
sell it for S. If at expiration S < E the option will not be exercised and it
will expire worthless. At t = T , the value of the option is known for certain
to be the payoff

C(S, T ) = max(S − E, 0). (17)

This is the final condition for our differential equation.
In order to find boundary conditions we consider the value of C when

S = 0 and as S → ∞. If S = 0 then it is easy to see from equation 1 that
dS = 0, and therefore, S will never change. If at expiry S = 0 then from
equation 17 the payoff must be 0. Consequently, when S = 0 we have

C(0, T ) = 0. (18)

Now when S → ∞ it becomes more and more likely the option will be
exercised and the payoff will be S − E. The exercise price becomes less and
less important as S →∞, so the value of the option is equivalent to

C(S, T ) ≈ S as S →∞. (19)

In order to solve the Black-Scholes equation we need to transform the equa-
tion into an equation we can work with. The first step is to get rid of the
S and S2 terms in equation 16. In order to do this consider the change of
variables

S = Eex (20)

t = T − τ
1
2
σ2

(21)

V = Ev(x, τ). (22)

Using the Chain rule from Calculus for transforming partial derivatives
for functions of two variables we have

∂V

∂S
=
∂V

∂x

∂x

∂S
+
∂V

∂τ

∂τ

∂S
(23)
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∂V

∂t
=
∂V

∂x

∂x

∂t
+
∂V

∂τ

∂τ

∂t
. (24)

Looking at equations 20, 21, and 22 it can be shown that

∂τ
∂t

= −1
2
σ2 ∂x

∂t
= 0 ∂x

∂S
= 1

S
∂τ
∂S

= 0

Plugging these into equation 23 and equation 24 yields

∂V

∂S
=
E

S

∂V

∂x
(25)

∂V

∂t
= −1

2
σ2E (26)

∂2V

∂S2
=

E

S2

∂2v

∂x2
− E

S2

∂V

∂x
. (27)

Substituting equation 25, equation 26, and equation 27 into the Black-
Scholes partial differential equation gives the differential equation

∂V

∂τ
=
∂2v

∂x2
+ (k − 1)

∂V

∂x
− kv (28)

where

k =
r

1
2
σ2
.

The initial condition C(S, T ) = max(S − E, 0) is transformed into

v(x, 0) = max(ex − 1, 0).

Now we apply another change of variable and let

v = eαx+βτu(x, τ). (29)

Then by simple differntiation we have

∂V

∂τ
= βeαx+βτu+ eαx+βτ ∂u

∂τ
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∂V

∂x
= αeαx+βτu+ eαx+βτ ∂u

∂x

∂2v

∂x2
= α(αeαx+βτu+ eαx+βτ ∂u

∂x
) + αeαx+βτ ∂u

∂x
+ eαx+βτ ∂

2u

∂x2
.

Substituting these partials into equation 28 yields

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2u

∂x2
+ (k − 1)(αu +

∂u

∂x
)− ku.

We can get rid of the of the u terms and the ∂u
∂x

terms by carefully choosing
values of α and β such that

β = α2 + (k − 1)α− k

and

2α + k − 1 = 0.

We can rearrange these equations so they can be written

α = −1
2

(k − 1) and β = −1
4

(k + 1)2.

We now have the tranformation from v to u is

v = e−
1
2

(k−1)x− 1
4

(k+1)2τu(x, τ)

resulting in the simple diffusion equation

du

dτ
=
d2u

dx2
for−∞ < x <∞, τ > 0. (30)

Our initial condition has now been changed as well to

u0(x) = u(x, 0) = max(e
1
2

(k+1)x − e
1
2

(k−1)x, 0). (31)

The solution to the simple diffusion equation obtained above is well-known
to be

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(s)e−
(x−s)2

4τ ds (32)
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where u0(x, 0) is given by equation 31. In order to solve this integral it is
very convenient to make a change of variable

y =
s− x√

2τ

so that

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(y
√

2τ + x)e−
y2

2 dy.

Substituting our intitial condition into this equation results in

u(x, τ) =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(k+1)(y
√

2τ+x)e−
y2

2 dy

− 1√
2π

∫ ∞
− x√

2τ

e
1
2

(k−1)(y
√

2τ+x)e−
y2

2 dy.

In order to solve this we will solve each integral separately. The first integral
can be solved by completing the square in the exponent. The exponent of
the first integral is

−1

2
y2 +

1

2
(k + 1)(x+ y

√
2π).

Factoring out the −1
2

gives us

−1

2
(y2 − [k + 1]y

√
2τ − [k + 1]x).

Separating out the term that is not a function of y, and adding and subtract-
ing terms to set up a perfect square yields

1

2
(k + 1)x− 1

2

y2 − [k + 1]y
√

2τ +

(
[k + 1]

√
2τ

2

)2

−
(

[k + 1]
√

2τ

2

)2


which can be written

1

2
(k + 1)x− 1

2

(
y − [k + 1]

√
2τ

2

)2

+
1

2

(
[k + 1]

√
2τ

2

)2
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and simplified to

1

2
(k + 1)x− 1

2

(
y − [k + 1]

√
2τ

2

)2

+
(k + 1)2τ

4
.

Thus the first integral reduces to

I1 =
e

1
2

(k+1)x

√
2π

∫ ∞
− x√

2τ

e
1
4

(k+1)2τe−
1
2(y− 1

2
[k+1]

√
2τ)

2

dy.

Now substituting

z = y − 1

2
[k + 1]

√
2τ

results in

I1 =
e

1
2

(k+1)x + 1
4
(k + 1)2τ√

2π

∫ ∞
− x√

2τ
− 1

2
(k+1)

√
2τ
e−

1
2
z2

dz

=
e

1
2

(k+1)x + 1
4
(k + 1)2τ√

2π
N(d1)

where

d1 =
x√
2τ

+
1

2
(k + 1)

√
2τ

and

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2

dy

is the cumulative distribution function for the normal distribution.
The calculation of the second integral I2 is identical to that of I1, except

that (k-1) replaces (k+1) throughout. Finally, we work our way backwards
with

v(x, τ) = e−
1
2

(k−1)x− 1
4

(k+1)2τu(x, τ)

and then substituting the inverse transformations

x = log
(
S

E

)

17



τ =
1

2
σ2(T − t)

C = Ev(x, τ)

we finally obtain the desired result

C(S, t) = SN(d1)− Ee−r(T−t)N(d2)

where

d1 =
log( S

E
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and

d2 =
log( S

E
) + (r − 1

2
σ2)(T − t)

σ
√
T − t

.

10 Conclusion

The important point to note about the derivation of the Black-Scholes differ-
ential equation is that we never specified a specific type of derivative security
we were trying to find the price for until we set up boundary conditions for
a European call. This means that a person can use the Black-Scholes differ-
ential equation to solve for the price of any type of option only by changing
the boundary conditions.

The Black-Scholes model truly revolutionized the world of finance. For
the first time the model has given traders, hedgers, and investors a standard
way to value options. The model also has also caused a huge growth in the
importance of financial engineering in the world of finance. Today, mathe-
maticians are building models to maximize portfolio returns while minimizing
risk. They are also building sophisticated computer programs to search for
inefficiencies in the market. The world of finance is becoming built on math-
ematics and the Black-Scholes model was the beginning of this mathematical
revolution.
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