Derivatives Pricing and Financial Modelling

Andrew Cairns: room M3.08

E-mail: A.Cairns@ma.hw.ac.uk

Tutorial 10

1. (Ho-Lee)

Let $X(T) = \int_0^T \tilde{W}_t dt$.

- (a) What is the distribution of X(T)?
- (b) Find $E[\exp(-X(T))]$.
- (c) Let $r(T) = r(0) + \int_0^T \theta(t) dt + \sigma \tilde{W}_t$ for some deterministic function $\theta(t)$. Find an expression for P(t, T).
- (d) Hence show that if the initial forward-rate curve f(0,T) is given, then

$$\theta(T) = \frac{\partial}{\partial T}f(0,T) + \sigma^2 T$$

- (e) Show that there exists a similar expression to that under the Vasicek model for the price of a European call option on a zero-coupon bond.
- 2. Suppose that $f(0,t) = 0.06 + 0.01 \exp(-0.2t)$.

Consider the Hull & White model.

Suppose that we know that

$$\lim_{t \to \infty} Var[r(t)] = \frac{\sigma^2}{2\alpha} = 0.02^2$$

is fixed.

- (a) Investigate the form of $\mu(t)$ in the Hull & White model for various choices of α .
- (b) For what value of α does $\mu(0) = \mu(\infty)$?
- 3. (*) Under the Hull and White model suppose that $\alpha = 0.24$, $\sigma = 0.02$ and $f(0,t) = 0.06 + 0.01e^{-0.2t}$.
 - (a) Calculate the price of a 3-month European call option written on a zero-coupon bond which will mature in 10 years time with a nominal value of £100 and a strike price of £53.50.

- (b) What is the minimum amount of information required to make the calculation in (a)?
- 4. Under the Heath-Jarrow-Morton framework we have

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)dW_t$$

- (a) Under what circumstances is such a model arbitrage free?
- (b) Under what circumstances is this model Markov? (You should identify separately an "impractical" and a "practical/useful" definition.)
- (c) Which of the following models are Markov under the equivalent martingale measure Q for a suitable drift term $\alpha(t, T)$:
 - i. σ(t,T) = σ for all t, T;
 ii. σ(t,T) = (1 e^{-δt})σ for all t, T;
 iii. σ(t,T) = σ(t) for all t, T where σ(t) is an Ito process satisfying the SDE dσ(t) = a(m σ(t))dt + b√σ(t)dŴ_t and Ŵ_t is a brownian motion under Q which is independent of W_t;
 iv. σ(t,T) = σ/(T t + δ) for all t, T and for some δ > 0;
 v. σ(t,T) = σe^{-α(T-t)} for all t, T;
 - vi. $\sigma(t,T) = \sigma_1 e^{-\alpha_1(T-t)} + \sigma_2 e^{-\alpha_2(T-t)}$ for all t,T?
- 5. (*) Suppose:

$$\begin{split} f(0,T) &= \lambda_0 + \lambda_1 e^{-\alpha T} - \frac{\sigma^2}{2\alpha^2} \left(1 - e^{-\alpha T}\right)^2 \\ \sigma(t,T) &= \sigma e^{-\alpha(T-t)} \\ df(t,T) &= \theta(t,T) dt + \sigma(t,T) d\tilde{W}(t) \\ \text{where } \theta(t,T) &= -\sigma(t,T) S(t,T) \\ S(t,T) &= -\int_t^T \sigma(t,u) du \end{split}$$

Derive a formula for r(t) of the form:

$$r(t) = g(t, r(0)) + \int_0^t h(s, t) d\tilde{W}(s)$$

for suitable deterministic functions g and h. What name is given to this model?

- 6. (*) Suppose that the model $df(t,T) = \alpha(t,T)dt + \sigma(t,T)dZ(t)$ where Z(t) is a Brownian Motion under the real-world measure P, is arbitrage free and where $\sigma(t,T)$ is deterministic. The initial forward-rate curve f(0,u) is given.
 - (a) Why is f(t,T) not necessarily Gaussian?
 - (b) Suppose that the market price of risk $\gamma(t)$ is deterministic. Prove that f(t,T) is now Gaussian.
 - (c) Under the equivalent martingale measure Q we have

$$df(t,T) = -\sigma(t,T)S(t,T)dt + \sigma(t,T)dZ(t)$$

where $\tilde{Z}(t)$ is a Brownian motion under Q and $S(t,T) = -\int_t^T \sigma(t,u) du$. Given $P(0,\tau)$ for all τ , show that for any $0 < t < T < \infty P(t,T)$ is log-normally distributed under Q.

7. The dynamics of zero-coupon prices are defined by

$$dP(t,T) = P(t,T) \left(r(t)dt + S(t,T)d\tilde{Z}(t) \right)$$

for all T, where $\tilde{Z}(t)$ is Brownian motion under the equivalent martingale measure Q.

A coupon bond pays a coupon rate of g per annum continuously until the maturity date T when the nominal capital of 100 is repaid. The price at time t of this bond is denoted by V(t).

(a) Show that for some functions a_v and b_v :

$$dV(t) = a_V(t, r(t), V(t))dt + b_V(t, r(t), \mathcal{P}(t))dZ(t)$$

where $\mathcal{P}(t) = \{P(t, u) : t \le u \le T\}.$

(b) Suppose that

$$P(0, u) = e^{-0.1u} \text{ for all } u$$

$$S(t, u) = -10\sigma \left(1 - e^{-0.1(u-t)}\right) \text{ for all } t, u$$

$$q = 10$$

- i. What is V(0) as a function of T?
- ii. What is the volatility of V(t) at time 0 (that is, the $d\tilde{Z}$ component of dV(t)/V(t)?
- iii. Hence deduce that the irredeemable bond $(T = \infty)$ has the highest volatility amongst all bonds with a coupon of 10%.
- iv. Give an example of a bond which has a higher volatility than the irredeemable 10% coupon bond.