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Abstract:  The market risk of a portfolio refers to the possibility of financial loss due to the
joint movement of systematic economic variables such as interest and exchange rates.
Quantifying market risk is important to regulators in assessing solvency and to risk
managers in allocating scarce capital. Moreover, market risk is often the central risk faced
by financial institutions.

The standard method for measuring market risk places a conservative, one-sided
confidence interval on portfolio losses for short forecast horizons. This bound on losses is
often called capital-at-risk or value-at-risk (VAR), for obvious reasons. Calculating the VAR
or any similar risk metric requires a probability distribution of changes in portfolio value. In
most risk management models, this distribution is derived by placing assumptions on (1)
how the portfolio function is approximated, and (2) how the state variables are modeled.
Using this framework, we first review four methods for measuring market risk. We then
develop and illustrate two new market risk measurement models that use a second-order
approximation to the portfolio function and a multivariate GARCH(l,1) model for the state
variables. We show that when changes in the state variables are modeled as conditional or
unconditional multivariate normal, first-order approximations to the portfolio function yield
a univariate normal for the change in portfolio value while second-order approximations
yield a quadratic normal.

Using equity return data and a hypothetical portfolio of options, we then evaluate the
performance of all six models by examining how accurately each calculates the VAR on an
out-of-sample basis. We find that our most general model is superior to all others in
predicting the VAR. In additional empirical tests focusing on the error contribution of each
of the two model components, we find that the superior performance of our most general
model is largely attributable to the use of the second-order approximation, and that the
first-order approximations favored by practitioners perform quite poorly. Empirical
evidence on the modeling of the state variables is mixed but supports usage of a model
which reflects non-linearities in state variable return distributions.



1 Introduction

Investment and commerical banks, as well as treasury operations of many corporations, hold portfolios

of complex securities whose value depends on exogenous state variables such as interest and exchange

rat es. To allocate capital, assess solvency, and measure the profitability of different business units

(ranging from individual traders to the entire bank), managers and regulators quantify the magnitude

and likelihood of possible portfolio value changes for various forecast horizons. This process is often

referred to as “measuring market risk”, which is a subset of the risk management function.

It should be noted at the outset that market risk is not the only financial risk faced by banks.

For example, banks certainly face financial risk from changes in the credit-worthiness of counter-

parties (credit risk), the inability to unload a position in a timely fashion (liquidity risk), errors in

implementing trading and pricing policies (execution risk), and other risk factors. Depending on a

bank’s strategy and resources, different banks will face each of these risks to varying degrees. It is

also possible that these risks are correlated with market risk. However, the purpose of this note is

not to identify or quantify all risk factors in detail. Rather, it is to describe the standard methods

for measuring market risk and to suggest several ways in which these methods can be improved.

To date, measurement of market risk has focused on one particular metric called value-at-risk, or

VAR. The VAR statistic is defined as a one-sided confidence interval on portfolio losses:

on the risk tolerance of management and the bank’s excess capital, and is exogenous to our model.

The forecast horizon At is often referred to as an

“orderly liquidation period” because it is the time period over which management is confident that

underperforming portions of the portfolio can be sold. The choice of At is exogenous to our model.

are made. In this paper we review four such approximations, develop two new ones, then illustrate

and test all six by comparing their out-of-sample accuracy in computing the VAR.

The chief contributions of our paper are four-fold. First, we characterize the probability density

function of portfolio value changes as a quadratic normal when a second-order model is used to

approximate the portfolio function and when a conditional or unconditional multivariate normal

distribution is used to model changes in the state variables. Second, we show using an extensive set of
2



options that second-order approximations are always more accurate than first-order approximations.

This result is intuitive because second derivatives (gammas) appear in the Black-Scholes partial

differential equation. For portfolios of securities without gamma risk, our methods are no more (or

less) accurate than delta-based models. Third, we introduce multivariate GARCH modeling into

the risk management literature. Previous published papers in risk management have used univariate

ARCH models. Such models exclude any notion of correlation or covariance, which is quite limiting

for risk management in which the spreading of risk is of central concern. We show empirically that

this model is superior on an out-of-sample basis to two others currently in use. Fourth, we empirically

demonstrate that our most general model employing a second-order approximation to the portfolio

function and a multivariate GARCH(1,1) model is superior to the other five surveyed in computing

the VAR for various cr.

Incorporating gamma into a VAR calculation system may also alleviate incentive problems within

banks that can arise when the VAR is used to allocate capital. Increasingly, standard practice in

investment banks is to evaluate and compensate traders and trading groups on the basis of return

per unit VAR. Such an approach may pose incentive problems if the VAR calculation method omits

gammas, because traders could, by manipulating gamma, still take significant market risk without

changing their VARs. Usage of a risk measurement system that accurately charges for gamma risk

may thus discourage attempts to “game” the risk management system when the VAR is used to

charge capital. Although banks use additional information to compensate traders and allocate capital,

incorporating gamma into a system that provides risk information to both traders and management

makes sense, if only because convexity (gamma) considerations appear to play an important role in

trading decisions.

This is a timely paper. Recent regulatory and industry advisory committees have strongly rec-

ommended that dealers in derivatives adopt formal and regular methods to quantify market risk.

In Group of Thirty (1993), for example, an international group of dealers suggested practices and

principles for measuring the market risk of portfolios of derivatives. They recommended that dealers

or more) as a routine business practice for managing risk. The calculations should be in a frame-

work that reflects risk from all types of securities and all state variables (interest rates, currency

exchange rates, commodity prices, and equity prices). These reports, as well as recent comments

by regulators, however, do not discuss in detail the appropriate methodology for computing the

distribution of portfolio losses; this task is left to the reader. Hence this paper and presumably

others.

‘In testimony before a U.S. Congressional subcommittee in May of 1994, Alan Greenspan specifically discussed the

importance of reflecting non-linearities in risk management: “Although the market risks of many banking instruments

can be accurately assessed using simple models, including many derivative contracts, a considerably more sophisticated

approach is necessary to assess more complex instruments, especially those with option characteristics, and to aggregate
different categories of market risk.” This quote is from Chew (1994).
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Due to its obvious importance, the technical aspects of bank risk management have begun to

attract more attention in the academic literature. For example, Hsieh (1993), Merton and Perold

(1994), and Dimson and Marsh (1995), all directly discuss issues related to bank risk management

and market risk measurement. Hsieh (1993) is discussed in detail below. Merton and Perold (1994)

discuss the computation of risk capital for financial firms. Dimson and Marsh (1995) compare several

methods proposed by regulators for computing risk capital for equity portfolios.

The rest of this paper is as follows:

Section 2 briefly reviews four important papers on the measurement of market risk, Garbade

(1986), J.P. Morgan (1994), Hsieh (1993), and Wilson (1994). We present simplified versions of these

models in a framework that focuses on two key elements: (1) the portfolio function approximation

method, and (2) the state variable approximation method. We show that the VAR can be derived by

placing assumptions on each of these two elements. Garbade (1986), J.P. Morgan (1994), and Hsieh

(1993) assume that changes in the portfolio function can be well-approximated by the delta3 of the

portfolio, but differ in how changes in the state variables are modeled. Garbade (1986) assumes that

changes in the state variables over the forecast period can be modeled as a multivariate normal. We

will refer to this model as the delta-normal model. J.P. Morgan (1994) refines the modeling of the

changes in the state variables to reflect non-linearities by weighting the residuals in computing the

variance. We will refer to the J. P. Morgan (1994) model as the delta-weighted normal model. Hsieh

(1993) further generalizes the modeling of the evolution of the state variables with an EGARCH

model. We will refer to the Hsieh (1993) model as the delta-GARCH model. Wilson (1994) enhances

the modeling of the portfolio function but reverts to the Garbade (1986) assumptions on the state

variables. Wilson (1994) models the convexity oft he portfolio by explicitly incorporating the gradient

and Hessian of the portfolio function. We will refer to this model as the gamma-normal model. In

Section 6, we compare the out-of-sample performance of these four models using a hypothetical

portfolio and equity return data from CRSP.

Section 3 and Section 4 develop our two contributions to market risk measurement. The first

model, presented in Section 3, derives a gamma-normal model in a fashion perfectly analogous to

how the delta-normal model is derived. For practitioners, this approach may be more intuitive than

that of Wilson (1994). Our model may also be more useful because it is computationally simple,

relying only on matrix manipulations.

In Section 4, we develop our most general model, which we term gamma-GARCH. This model

approximates the portfolio function using both the gradient and the Hessian and uses a multivariate

3The delta of a derivative security is the first derivative with respect to the underlying state variable. In a portfolio

context in which there are possibly many underlying state variables, the delta refers to the vector of first derivatives

of the portfolio with respect to the vector of underlying state variables, also known as the gradient. The gamma of a

derivative security is the second derivative with respect to the underlying state variables. In a portfolio contex, the

gamma of a portfolio is the matrix of second derivatives of the portfolio with respect to the vector of underlying state

variables, also known as the Hessian.
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GARCH model to approximate changes in the state variables. This contrasts with Hsieh (1993),

which used a univariate ARCH model. We use the Bollerslev (1990) parameterization which assumes

a GARCH(1,1) model for the volatility of each state variable and that state variable correlations

are constant, conditional on the time-varying volatilities. This model has been successfully applied

outside of risk management by Schwert and Sequin (1990), Cechetti, Cumby and Figlewski (1988),

Kroner and Sultan (1991), and others. This model is numerically efficient and straightforward to

implement.

Earlier authors have not thoroughly investigated the error entailed in using VAR calculation mod-

els of the type we discuss. We believe error analysis is especially important because all such models

explicitly tradeoff accuracy for computational speed. Our error analysis is conducted in Section 5 in

two parts. The first part of Section 5 examines how well each of the portfolio approximation models

approximates the portfolio function in the context of computing the VAR. We operate in a univariate

setting to keep matters tractable and work with a single European option on a non-dividend paying

stock under the assumption that the Black-Scholes option pricing model accurately values the op-

tion. As for the state variables, we show in Sections 2 through 4 that the key statistic for the state

variables is the covariance matrix of returns next period. Therefore, in the second part of Section

5, we examine the ability of several state variable models to predict, on an out-of-sample basis, the

variance of state variable return distributions.

Section 6 compares the accuracy of all six models in calculating the VAR. Using equity data

and a hypothetical portfolio, we compare the computed VARs over a thirteen and one-half year test

period. We show that our most general model, gamma-GARCH, generally outperforms the others in

predicting how frequently actual returns breach the expected VAR on an out-of-sample basis.

Section 7 concludes.

2 Literature Review: Four Risk Measurement Models

We start by presenting four risk measurement models, Garbade (1986), J.P. Morgan (1994), Hsieh

(1993), and Wilson (1993), in the context of a two-pronged framework based on (1) how the portfolio

Our review of these four models is more detailed than usual because we later use these models as

benchmarks for evaluating the performance of our own models.
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2.1 The Delta-Normal Model of Garbade (1986)

We start with the delta-normal risk measurement model of Garbade (1986). In this model, changes

in the portfolio function are approximated by the delta of the portfolio (which in this context is

the gradient ) while changes in the state variables are modeled as a multivariate normal. Using

univariate normal and define and derive a formula for the VAR. In particular, we show that the VAR

is a quantile of a univariate normal distribution.

representing an n x 1 vector of random state variables. For our purposes in risk management, we are

which we will generically refer to as At. These periods typically range from one day to one week or

more. For the state variables, the delta-normal model makes assumptions about returns to holding

Assumption X-1.

We now turn to the derivation of the VAR for the delta-normal model. Recall from (1) that the

term involving second-order and higher derivative terms. Under assumption P-1, R 2 = 0. Thus,

changes in portfolio value can be approximated by:



we have:

In sum, the delta-normal method combines thetas (P t) and deltas (g), which consist of constants,

This yields a highly tractable framework in which it is simple to make probability statements about

market risk. Marginals, conditionals, confidence intervals, expected values, and other metrics can then

be easily calculated. Although practitioners and regulators have had a tendency to focus exclusively

on the VAR, we view the VAR as only a subset of what is possible in such a framework.
4 
more formally, consider the following multinormal theorem from Tong (1990):



2.2 The Delta-Weighted Normal Model of J.P. Morgan (1994)

The delta-weighted normal model, also known as “RiskMetrics, “ is due to J.P. Morgan (1994)5. As its

name implies, the delta-weighted normal model uses the delta to approximate changes in the portfolio

function, assumption P-1 6, but differs in how changes in the state variables are modeled, although

in general, is time-varying. J. P. Morgan (1994) does not present a formal model of state variable

evolution analogous to X-1, but does state clearly and precisely how to compute each element of

The weighted-normal (WTN) method differs from the normal (HOM) method in how the squared

their contribution to the overall sample (of size N). Under X-2, the squared residuals are weighted

of size N. The effect of these adjustment factors is to weight recent observations more heavily than

observations further away. If t he effect of more recent observations persist, this will be an improvement

more than 75 days away is weighted less than l% as heavily as yesterday’s data. In the sequel, we will

by simple interpolation. Although Morgan does not state the precise reduction in mean-squared

prediction error (MSPE) achieved by using exponential weighting over X-1, from charts and tables,

it appears as though it may be as much as 50% 7

. In practice, an infinite historical time series is not

available and the sum is truncated at some reasonable date.

we present are stripped-down and simplified versions of the actual models designed to convey only the essential points

made by the model.
6In J.P. Morgan (1994), the VAR calculation omits P t, perhaps because the coefficient of P t, At, is non-stochastic.
7page 63, RiskMetrics, 1994.



for the weighted-normal method that

or, roughly,

without an intercept term.

Because the forecast density remains normal, the calculation of the VAR for the delta-weighted

normal method is the same as for the delta-normal method. The only difference is the particular

normal method in Section 6.

2.3 The Delta-GARCH Model of Hsieh(1993)

As our naming convention implies the delta-GARCH model of Hsieh( 1993) uses the delta to approx-

imate changes in the portfolio function and an ARCH model to approximate the changes in the state

variables. ARCH models have proven particularly useful in financial econometrics for modeling state

variable ret urn distributions, which are known to have persistent variances and heavy tails. ARCH

models were first developed by Engle (1982) and were significantly generalized by Bollerslev (1986),

Bollerslev ( 1990), and others. Within the space of numerous ARCH model choices now available,

Hsieh (1993) selects the EGARCH parameterization:

 

likelihood. The use of the natural log insures positivity of the variance without additional restrictions.

This is a useful advantage over other ARCH models such as GARCH which require constraints on the

mean i.i.d. random sequence and allow the response oft he variance (h t) to vary depending on whether

because a large decline in price (“bad news”) induces more volatility than a large increase in price

(“good news” ), a phenomenon originally observed by Black (1976). This feature is of questionable

value for modeling exchange rates (Hsieh’s focus) because exchange rates are inherently symmetric

8page 81, RiskMetrics, 1995.
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originally proposed by Nelson (1991).

Hsieh’s analysis is univariate and consequently excludes any notion of correlation or covariance.

This is quite limiting for risk management in which the spreading of risk is of central concern.

Therefore, for purposes of implementing and illustrating the delta-GARCH model in this paper,

we will use the constant conditional correlation multivariate GARCH model of Bollerslev (1990)

instead of Hsieh’s univariate EGARCH model. This will make Hsieh’s approach meaningful for risk

management and will facilitate comparison of the different models. We will discuss the Bollerslev

(1990) multivariate parameterization in detail in a later section.

As for the calculation of the VAR for the delta-GARCH model, the only difference from the

the estimate of the state variable covariance matrix at time t under the multivariate GARCH model

time t using all available information.

for the delta-normal and delta- weighted normal models.

2.4 The Gamma-Normal Model of Wilson (1994)

In this section we present our interpretation of the gamma-normal model of Wilson (1994). Wilson’s

model is notable because it is the first published model to reflect the convexity of the portfolio

function. In the next section we present our own gamma-normal model. Wilson (1994) utilizes the

approximate changes in the portfolio function. We will refer to this assumption as P-2.

Wilson (1994, p.74) starts by defining the VAR as “the maximum possible loss over an orderly

liquidation period within a given confidence interval.” According to Wilson, this definition implies

the following optimization program: “solve for the market event that maximizes losses subject to the

constraint that the event and all events generating less losses are within a given confidence interval,”

or:

10



asserts this is equivalent to:

Wilson’s method is notable because it is the first published model that reflects the convexity

of the portfolio function. However, Wilson’s method may not be feasible for portfolios with many

state variables since the required quadratic program must be solved numerically with an optimization

package. Wilson suggests some shortcuts to simplify computation and decrease calculation time but

which entail error of unknown magnitude. No benchmarks or examples applying the method are

presented.

3 A Competing Gamma-Normal Model

In this section we develop a gamma-normal model that is equivalent to Wilson (1994). Our approach

steps are perfectly analogous to those used to derive the VAR for the delta-normal model and contrast

with the approach of Wilson (1994), which used numerical optimization to compute the VAR or an

approximate VAR. We start by recapping our two key assumptions, X-1 and P-2:

Taylor series about the mark-to-market of the portfolio. After some matrix manipulation, this yields

a quadratic function of a multinormal, which is a density function well-known to statisticians. We

then use standard techniques to calculate moments and quantiles, and the VAR follows directly. By

as

11



Now under P-2, R3 equals O, so we have:

well-known to statisticians. We next discuss how to calculate moments of a general quadratic form

affect the results. Therefore, in all of the examples that follow, we omitted these terms from the

computations.

We now turn to a discussion of how to tabulate the distribution function of our quadratic form,

eral published met hods, most of which were developed by Ruben (1962,1963). All of these techniques

of simpler but related univariate distributions (e.g., the chi-square or non-central chi-square) or of

special functions (e.g., Laguerre or Hermite polynomials). We implemented and tested several of

12



these methods, and others, and used sample tables that were published in various papers to validate

our software. However, we found that these methods were either too slow or experienced machine

underflow when tested wit h plausible parameters. Ultimately, we settled on Cornish-Fisher (CF)

expansions to calculate quantiles, as described by, for example, Johnson and Kotz (1970) or Kendall,

3.1 Relation to Wilson (1994)

We remarked earlier that our method and the method of Wilson (1994), though clearly different in

design and derivation, are equivalent. Here we demonstrate this in a simplified univariate setting.

To facilitate an analytical solution in both frameworks, we construct a stylized example and focus

on calculating one metric,

step is to complete the square:

This distribution is a special case of the

quadratic normal. Using a table of critical values, we find the 5% quantile for this distribution as

–13.28.

Wilson’s approach computes a VAR at 5% by maximizing the negative of the change in portfolio

within it’s 5% confidence bands:
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We can solve this optimization problem by inspecting the value of the function at either endpoint

of the constraint and at the minimum value of the function in between. The minimum value of the

function occurs at Z(s) = 0.95 or s = 1.645, where –Q = – 13.28. This figure matches the value we

calculated. Therefore, the two methods are equivalent, at least in this simplified univariate setting.

In summary, we have developed a gamma-normal model that has numerous advantages over

Wilson (1994). Our method is more intuitive because our approach explicitly characterizes the dis-

be more accessible to practitioners. Computation of the VAR is also simpler with our method. With

Wilson’s method, one must numerically solve an optimization problem, or make some simplifying as-

sumptions (e.g., diagonal H) that entail unknown error. The high dimensionality of the optimization

problem may pose computational difficulties in practice. In contrast, we provide quick formulae to

calculate the VAR without simplifying assumptions.

4 Gamma-GARCH Model
,

In this section we derive our most general model, which we term gamma-GARCH. This model uses a

second-order approximation to the portfolio function and a multivariate GARCH model to approx-

imate changes in the state variables. We start by stating our assumptions, P-2 and X-3. P-2 is

identical to the portfolio function assumption used for the gamma-normal model of Wilson (1994)

and our own in the preceding section

For the state variables, we utilize the multivariate GARCH parameterization suggested by Boller-

slev (1990), which we label X-3



advantages of this multivariate parameterization over others that have been suggested are parsimony

and simplicity. Both features stern from the assumption of constant correlation, conditional on the

univariate GARCH(1,1) models for the volatilities. As before, it will be useful to characterize the

Estimation is via numerical maximum likelihood using the Berndt, Hall, Hall, and Hausmann

(1974) algorithm with starting parameters determined by a quasi-random grid search. Standard

errors are acheived as the square root of the diagonal of the inverse of the Hessian matrix evaluated

at the MLE.

Calculation of the VAR is basically the same as before for the gamma-normal model. The forecast

calculated according to the GARCH model conditional on the available information at time t. Because

there is no change in the modeling of the approximation to the portfolio function, the forecast density

VAR and other statistics are the same as for the gamma-normal method.

Note that the gamma-GARCH model does not include the others as special cases. In particular,

the WTN model features time-varying conditional correlations, which are not part of the GARCH

model. Of course, the delta approximation is clearly a special case of the gamma approximation when
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5 Error Analysis

The models we have described and developed in the preceding sections are all explicitly local ap-

proximations. In this section we conduct tests to examine how accurately both parts of the model

perform. The first subsection examines the accuracy of the two portfolio approximation methods in

computing the VAR. We operate in a univariate setting to keep matters tractable and work with a

single European option on a non-dividend paying stock under the assumption that the Black-Scholes

option pricing model accurately values the option. We show that the gamma method is far more

accurate than the delta method according to a root mean square percentage error (RMSPE) crite-

rion. Of the 120 options we use as test cases, the gamma method outperforms the delta method in

Both models perform poorly for short-dated, deep out-of-the-money options, which are essentially

valueless.

We showed in Sections 2 through 4 that the key quantity for the state variables is the covari-

ance matrix of returns next period. Therefore, the second subsection examines the out-of-sample

performance of each of the three models (HOM, WTN, and GARCH) in forecasting the covariance

matrix of state variable returns. We use equity return data because of the availability y of CRSP, a

high-quality database with weekly data spanning more than 25 years. To evaluate the out-of-sample

relative performance of the three models, we use two methods. The first examines the square root

of the mean squared prediction error (RMSPE) of the square of the return of the state variables;

this provides mixed results. The second is a standard regression test of efficiency that regresses the

squared realized return on the predicted squared return. In such a regression, an unbiased and effi-

cient forecast should yield an intercept of zero and a slope coefficient of one with serially uncorrelated

errors and a high R 2. On this basis, the GARCH model marginally outperforms the WTN model.

The HOM model is vastly inferior to both WTN and GARCH by this metric. This combination of

tests has been used by Cho and West (1994), Canina and Figlewski (1993), Jorion (1995), and others.

5.1 Error Analysis for Approximation of the Portfolio Function

This section evaluates the performance of first-order (delta) and second-order (gamma) models in

computing the VAR. We operate in a univariate setting to keep matters tractable and work with a

single European option on a non-dividend paying stock under the assumption that the Black-Scholes

option pricing model accurately values the option. For each experiment we perform, we assume a

risk free interest rate of 7%, an underlying stock volatility of 20%, and a VAR forecast period of one

Tables 1 through 6 show six analyses of the approximation error. The first three show the error and

percentage error of the delta and gamma models when the portfolio consists of a single European put
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for a European call. The initial option position in each case is normalized to $1,000 to facilitate

comparison. For informational purposes, each table shows the values of the key inputs (Pt, PX and

PXX) and the option premium (P). All six tables show results for four different times to maturity

1.00, 1.05, and 1.10).

We computed all values using simulation and the true distribution of security returns under risk-

neutrality. Usage of the true distribution isolates the error introduced by the portfolio approximation

methods from any possible error caused by improper modeling of the state variables. The appropriate

risk-neutral density for the stock price next period is:

following quantities:

value, the distribution under a first-order approximation, and the distribution under a second-order.

Standard errors were less than 1% in most instances.

We provide three metrics to compare the performance of the two approximation methods: (1)

mean percent age error (MPE), defined as the average percentage difference between the true VAR and

an approximate e VAR; (2) mean absolute percentage error ( MAP E), defined as the average difference

between the absolute values of the percentage difference between the true VAR and an approximate

VAR; and (3) the square root of the mean squared percentage error (RMSPE), defined as the square

root of the average of the square of the percentage difference between the true VAR and an approxi-

It turns out the choice of metric makes no difference, because, according to all three, the gamma

method always outperforms the delta method, usually by wide margins. The percentage error of the



gamma method is low, usually less than 10%, except in pathological situations where the option is

essentially without value.

Table 1

Table 2

Table 3

MAPE”) is one-third of the delta MAPE (5% vs. 15%). Moreover, the relative performance of the

mark-to-market of the portfolio. For example, while the delta MAPE clearly increases for decreasing

constant (MAPE(10%)=5%, MAPE(5%)=5%, MPE(1%)=6%). The results are similar on a RMSPE

the delta and gamma RMSPE are 63% and 10%, respectively.

For calls, the performance of the delta method improves, but on average is still much infe-

rior to the performance of the gamma method. As before, while the error of the delta method

the MAPE of the gamma method remains small and constant (MAPE(10%)=6%, MAPE(5%)=6%,

and MAPE(1%)=6%).

Table 4

Table 5

Table 6

The MPE, MAPE, and RMSPE reported in Tables 1 through 6 are summarized in Table 7.

Table 7

For all 120 options that we examine, the error of the delta method is negative. Thus the delta

This underestimation of the VAR stems from the fact that gamma is positive for all of the option

cases we happen to examine. For other securities with negative convexity (gamma), the delta method

would overestimate the VAR, ceteris paribus.
18



Both models perform poorly when the option is essentially valueless. These cases occur when the

In these instances, the gamma MAPE averages less than .50%, while the corresponding delta MAPE

averages more than 100%.

Our conclusion is that the delta method performs very poorly and that the gamma method is far

superior to the delta method. This result is particularly intuitive in the context of derivative asset

pricing since second derivatives appear in the the Black-Scholes PDE. The performance of the delta

method is slightly better for calls than for puts, but still much inferior to the performance of the

gamma met hod. The error for the gamma method is slightly positive for puts, slightly negative for

calls. The delta met hod is always too conservative (estimates a VAR more negative than the real

VAR) because gamma is always positive in the cases we examine. Both models perform poorly for

options which are essentially valueless.

5 .2 .1  S ta te  Var iab le  Da ta

Table 8 shows an excerpt of the data we used in our analysis. To simplify matters, we used only

equity data from CRSP, a database that is well-known and of high-quality.

Table 8

We used weekly data sampled on successive Wednesdays to help mitigate problems others have

encountered with daily data. These include spurious negative serial correlation due to “bid-ask”

bounce, as well as problems due to non-trading periods such as holidays, which normally occur on

Mondays, Tuesdays, Thursdays, and Fridays. We found usage of weekly data (with weeks beginning

and ending on successive Wednesdays) largely avoids these problems. The equity prices are contem-

poraneous daily closing prices for Dow Chemical (DOW), Exxon (EXX), Union Carbide (UNCA),

Coca-Cola (COKE), and the Standard and Poors 500 Index (S&P 500) over a twenty-six year period

starting on January 1, 1969 and ending on December 31, 1994. These five securities are widely held,

actively traded, and highly liquid. To compute a weekly return series using the twenty-six years of

daily data, we compounded daily returns between successive Wednesdays. This approach netted 1356

observations for each series.

Of course, these price series are for illustrative purposes only. Other equity price series and other

state variable types (e.g., currency prices, interest rates, commodity prices) could be incorporated

into the framework without difficulty or loss of generality. We selected a forecast time period of

longer) could be incorporated into the framework without difficulty or loss of generality.
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into two periods, 1969-1980.5, and 1980.5-1994. We used the first period of twelve and one-half years

(650 weekly observations) to calibrate our models. We found this time period was necessary to allow

the parameters of the GARCH model to stabilize. Each time we recomputed parameters thereafter,

we used the most recent 650 weekly observations then available. The last thirteen and one-half years

of data (706 weekly observations) were used for out-of-sample testing. In testing the models over

this period, we calculated covariance matrices for the HOM, WTN, and GARCH models on a weekly

basis. For the GARCH models, we recalculated parameters only twice a year because the numerical

used the most recent conditional variances and squared realized returns, as called for under X-3.

As noted earlier, we used the return series

available directly from CRSP. The differencing interval is identical to the forecast horizon, 1 week.

, as of 12/28/94 for the five state variables. All values

were highly significant.

Table 9

Table 10

Table 11 shows parameter estimates under X – 3 for the regression model X – 3 as of 12/28/1994.

Table 11
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5.2.5 Evaluation of the Three Forecasting Methods

Following Jorion ( 1995), Cho and West ( 1994), Canina and Figlewski ( 1993), and numerous other

authors, we use two metrics to evaluate the performance oft he three state variable models in forecast-

ing the covariance matrix of returns next period: (1) the square root of the mean squared prediction

error (RMSPE); and (2) the results of regression efficiency tests of the realized squared return on the

forecast variance. The RMSPE is computed as:

is the forecast of the variance at time t, computed at t – 1. Using the forecast variances computed

under X-1, X-2, and X-3, we applied the RMSPE formula for each of the three models at each of

the 706 forecast dates. Results are shown in Table 12.

Table 12

The evidence in Table 12 is inconclusive. According to the RMSPE metric, the GARCH model

appears only marginally superior to WTN and HOM. For the S&P 500, the RMSPE for HOM, WTN,

and GARCH, are 0.00158, 0.00155, and 0.00154, respectively. These results are representative of the

other state variables. Thus, no model emerges as clearly superior.

An alternative technique used by researchers is to conduct an efficiency regression of the square

of realized returns on the forecast variance,

and serially uncorrelated. This implies a Durbin-Watson test for serial correlation. Moreover, the

higher the R* in such a regression, the more information contained in the forecast. Results of these

regressions appear in Table 13.

Table 13

The GARCH regression coefficients appear plausible. In the case of the S&P 500, the evidence

coefficients are similar among the different regressions, but are all too low and average 0.68. Recall
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that J.P. Morgan (1995)’s WTN model is equivalent to a zero intercept IGARCH(l,l) model with

The Durbin-Watson test indicates that the strongest evidence against serial correlation (and

therefore in favor of efficiency) is for the S&P 500 GARCH regression. In this case, the Durbin-

Watson statistic is 1.94 versus an ideal value of 2.00. However, two of the five GARCH models fail

the Durbin-Watston test while both WTN and HOM generally pass (at 1% and 5% levels) when the

GARCH model passes.

By the R 2 standard, both the WTN and GARCH models outperform HOM by wide margins,

with the GARCH model marginally superior to WTN. For the S&P 500, the R 2 for the GARCH,

WTN, and HOM models are 0.048, 0.036, and 0.006, respectively. These results are representative of

the other four sets of regressions.

Thus, while the evidence slightly favors the GARCH model over the two alternatives, none emerges

as a clear best choice. This contrasts with our anlaysis of the portfolio function approximation

methods in which the gamma method emerged as unambiguously superior to the delta method. The

poor performance of the HOM model is to be expected inasmuch as many studies have shown that

volatility is time-varying. The performance of the WTN model might be improved upon by optimizing

[Ongoing research tests other state variable models, including the EGARCH model of Nelson (1991), an inte-

grated GARCH model (IGARCH), an IGARCH model without an intercept term, and the GARCH model of

Glosten, Jaganathan, and Runkle (1992) (GJRGARCH). The IGARCH model without an intercept is the J.P.

6 Illustration and Comparison of the Methods

In this section we illustrate and compare the performance of the six risk measurement models. These

six models arise from considering all combinations of the two portfolio approximation models (P-1

and P-2) and the three state variable models (X-1, X-2 and X-3). The data source and state

variables are the same as earlier. Our period of analysis is 01/01/1969 through 12/31/1994, a period

of twenty-six years. As above, we used the first twelve and one-half years (650 weeks) to calibrate

the models and the remaining thirteen and one-half years (706 weeks) for out-of-sample testing.

Table 14 lists the five securities we used to test our model. These are standard European options,

three puts and two calls, one on each state variable. We used the Black and Scholes (1973) option
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pricing model to value these securities and to calculate hedge ratios. We set the input parameters

for all five options to achieve a range of values for the delta vector (g) and gamma matrix (H) to

illustrate the flexibility of our method. We tested a variety of portfolios and found that the results

were always very similar to those we report. At each forecast date, we set the value per state variable

to $200 by adjusting the number of options on each state variable. This made the total value of the

portfolio $1,000 and facilitated comparison among different days. We used these securities and this

model because of the known convexity properties of options and the universality of the Black-Scholes

model. In applying this model to each of the state variables, we did not make modifications to the

formulae for dividends received on the equities and other possible real-world complications such as

transactions costs. We view these refinements as unnecessary for an analysis of this type and do

not believe they would affect the basic conclusions of our comparison of the alternative market risk

measurement methods. In addition, the option pricing parameters assumed are clearly hypothetical.

Table 14

6.1 Sample VAR Results for One Week

The results for one week are presented in Table 15. We show seven statistics for each of the six VAR

measurement methods, the first four central moments (the mean, the variance, the skewness, and the

excess kurtosis) and the first, fifth, and tenth percentiles. Of course, the latter three of these statistics

are the VAR at l%, 5%, and 10% confidence levels. Skewness and excess kurtosis are zero for all of

the delta models because in all cases the forecast density is univariate normal. The corresponding

quadratic normal densities are both positively skewed and leptokurtotic.

Table 15

6.2 Out-of-Sample VAR Comparison

Table 16 compares the performance of the six VAR calculation methods in correctly predicting the

show the actual number of times over the 706 week testing period that the actual realized loss on

the portfolio exceeded the estimated VAR. This count is denoted as C in Table 16. Next to C is the

actual frequency implied by C, given the 706 observations, which we denote as A. A is computed

Table 16
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The results indicate that in two of the three cases, the A for the gamma-GARCH model is closest

model at the l% level, but this may be due to the low number of observations in this category.

All of the HOM models perform poorly. In all cases, either or both of the WTN and GARCH

models more accurately predict the VAR. This echoes the efficiency regression results. All of the

gamma models perform better than the corresponding delta models, usually by wide margins. For

performance is very poor compared to the corresponding gamma-GARCH method, which achieves

A = 4.7%.

7 Conclusion

Our results indicate that the existing first-order (delta) models favored by practitioners perform very

poorly in many situations when the portfolio has gamma risk, and that usage of second-order models,

such as our own, can significantly improve the practice of market risk measurement. For example,

and gamma methods were 38% and 6%, respectively. Such models should continue to be used with

caution, however, because even gamma models perform poorly in certain situations, such as when

the option is essentially valueless.

Although the strongest case could be made for the GARCH model among the three state variable

models considered, our results indicate that even the GARCH model leaves something to be desired.

No model was unambiguously best under either an R* or RMSPE criterion. This result indicates

that other models should be implemented and tested. In particular, we suggest more research on

IGARCH and EGARCH models. Moreover, it would be interesting to extend this analysis to other

types of state variables and securities.
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percentage error (RMSPE).
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The table below reports measurement errors when first-order and second-order approximations are used to calculate

non-dividend paying stock is used as the control asset and is priced using the Black-Scholes formula. The variance of
= 0.04. Each row shows VARS calculated for one combination

as described in the text. Standard errors were all less than 1 percent of the estimates and are therefore omitted. The
last two columns show the relative error (expressed in percent) of the two approximations to the true VAR. The three
final rows show the mean percentage error (MPE), mean absolute percentage error (MAPE), and the root mean square
percentage error (RMSPE).
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The table below reports measurement errors when first-order and second-order approximations are used to calculate

non-dividend paying stock is used as the control asset and is priced using the Black-Scholes formula. The variance of
= 0.04. Each row shows VARS calculated for one combination

as described in the text. Standard errors were all less than 1 percent of the estimates and are therefore omitted. The
last two columns show the relative error (expressed in percent) of the two approximations to the true VAR. The three
final rows show the mean percentage error (MPE), mean absolute percentage error (MAPE), and the root mean square
percentage error (RMSPE).
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The table below reports measurement errors when first-order and second-order approximations are used to calculate

non-dividend paying stock is used as the control asset and is priced using the Black-Scholes” formula. The variance of
0.04. Each row shows VARs calculated for one combination

as described in the text. Standard errors were all less than 1 percent of the estimates and are therefore omitted. The
last two columns show the relative error (expressed in percent) of the two approximations to the true VAR. The three
final rows show the mean percentage error (MPE), mean absolute percentage error (MAPE), and the root mean square
percentage error (RMSPE).
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percentage error (RMSPE).            
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Table 7: Summary of Approximation Error (%)

The table below summarizes the simulation results in Tables 1 through 6. Three different metrics, mean percentage
error (MPE), mean absolute percentage error (MAPE), and root mean square percentage error (RMSPE), are presented

Type level
10%

Puts 5
1

10
calls 5

1

The price series below are excerpted from the twenty-six years (1969 through 1994) used in the study. The data was
sampled weekly (on successive Wednesdays) yielding an average of 1356 observations. The Equity prices are from the
CRSP database.

74.375
75.250
73,125
69.750
69.000
67.625
61.625
64.000
64.375
66.875
67.500
67.500

58.625
59.500
61.250
62.000
60.250
60.625
60.500
60.375
60.750
61.000
61.500
61.750

32.125
33.500
34.125
31.000
31.000
30.875
27.000
28.625
28.750
30.125
30.000
29.750

49.875
50.625
50.000
50.250
50.625
52.250
51.750
51.125
50.875
50.875
52.750
52.250

465.470
470.280
462.610
466.510
465.420
465.620
449.930
453.690
451.230
454.970
459.610
460.860



R
DOW EXX UNCA COKE S&P 500

DOW 1.000 0.335 0.555 0.266 0.585
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the numerical maximization results:

DOW:

EXX:

UNCA:

COKE:

S&P 500:

The constant correlation matrix is:

R =

When this model is applied to the return series as’ of 12/28/94, the predicted return volatilities for the following week

Table 12: Root Mean Square Prediction Error (RMSPE) for X-1, X-2, and X-3

The three state variable return models (normal, X-1; weighted-normal, X-2; and GARCH, X-3) were applied as de-
scribed in the text.
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Table 13: Regression Tests of Efficiency for X-1, X-2, and X-3

variables appear below. Newey and West (1987) autocorrelation- and heteroskedasticity-consistent standard errors are in
parentheses below the estimated parameters.
with p-value below. The superscripts “@Y’ and “*“ indicate significance of the durbin-watson (DW) test statistic at 5%
and 1% levels, respectively.

DOW
X-1 - HOM 8

(0:0025) 0.012 0.012 
00073 889 146 0007

X-3 - GARCH ‘0.0006’ ‘0.68’ 4.45 1.73” 0.018
(0.0003) (0.22) 0.106
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Table 14: Inventory of Securities by State Variable

Five of the securities in the portfolio are standard European options on each of the five state variables. The option
pricing parameters are purely hypothetical. The Black-Scholes pricing model was used to value all options. X is the

a uniform total value per state variable of $200.00.

Table 15: VAR Illustration

Moments and other statistics such as the VAR are shown below for the six VAR calculation methods (consisting of all
combinations of the two portfolio approximation methods and the three state variable models) for one calculation date,

fifth, and tenth percentiles. The latter three of these statistics are the VARS at 1%, 5%, and 10%, respectively, Omitted
entries are zero.

Table 16: Out-of-Sample VAR Comparison

The results below compare the performance of the six VAR calculation methods at correctly predicting the VAR. The
methods were applied to a hypothetical portfolio on an out-of-sample basis for 706 weeks from 1981 through 1994. The

Portfolio Fen. State
IApproximation Variable 10% 5% 1%

Model Model C A  C A C A
P-1 - delta X-1 - HOM 27 3 .8% 12 1.7% o 0.0%
P-1 - delta X-2 - WTN 29 4.1 10 1.4 1 0.1
P-1 - delta X-3 - GARCH 32 4.5 13 1.8 3 0.4

P-2 - gamma X-1 - HOM 51 7.2 27 3.8 4 0.6
P-2 - gamma X-2 - WTN 53 7.5 29 4.1 7 1.0
P-2 - gamma X-3 - GARCH 60 8.5 33 4.7 10 1.4
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