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1 Call and Put Spot Options

Let us first describe briefly the set of general assumptions imposed on our models of financial mar-
kets. We consider throughout, unless explicitly stated otherwise, the case of a so-called frictionless
market, meaning that: all investors are price-takers, all parties have the same access to the relevant
information, there are no transaction costs or commissions, and all assets are assumed to be perfectly
divisible and liquid. There is no restriction whatsoever on the size of a bank credit, and the lending
and borrowing rates are equal. Finally, individuals are allowed to sell short any security and receive
full use of the proceeds (of course, restitution is required for payoffs made to securities held short).
Unless otherwise specified, by an option we shall mean throughout a European option, giving the
right to exercise the option only at the expiry date. In mathematical terms, the problem of pricing
of American options is closely related to optimal stopping problems. Unfortunately, closed-form ex-
pressions for the prices of American options are rarely available; for instance, no closed-form solution
is available for the price of an American put option in the now classic framework of the Black-Scholes
option pricing model.

A European call option written on a common stockis a financial security that gives its holder the
right (but not the obligation) to buy the underlying stock on a prespecified date and for a prespecified
price. The act of making this transaction is referred to as exercising the option. If an option is not
exercised, we say it is abandoned. Another class of options comprises so-called American options.
These may be exercised at any time on or before the prespecified date. The prespecified fixed price,
say K, is termed the strike or exercise price; the terminal date, denoted by T in what follows, is
called the expiry date or maturity. It should be emphasized that an option gives the holder the right
to do something; however, the holder is not obliged to exercise this right. In order to purchase an
option contract, an investor needs to pay an option’s price (or premium) to a second party at the
initial date when the contract is entered into.

Let us denote by ST the stock price at the terminal date T. It is natural to assume that ST

is not known at time 0, hence ST gives rise to uncertainty in our model. We argue that from the
perspective of the option holder, the payoff g at expiry date T from a European call option is given
by the formula

g(ST ) = (ST −K)+ def= max {ST −K, 0}, (1)

∗The present text is based on Chapter I of the monograph: M. Musiela and M. Rutkowski: Martingale Methods
in Financial Modelling. Springer-Verlag, Heidelberg Berlin New York, 1997
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2 Introduction to Arbitrage Pricing

that is

g(ST ) =
{

ST −K if ST > K (option is exercised),
0 if ST ≤ K (option is abandoned).

In fact, if at the expiry date T the stock price is lower than the strike price, the holder of the call
option can purchase an underlying stock directly on a spot (i.e., cash) market, paying less than K.
In other words, it would be irrational to exercise the option, at least for an investor who prefers
more wealth to less. On the other hand, if at the expiry date the stock price is greater than K,
an investor should exercise his right to buy the underlying stock at the strike price K. Indeed, by
selling the stock immediately at the spot market, the holder of the call option is able to realize an
instantaneous net profit ST −K (note that transaction costs and/or commissions are ignored here).
In contrast to a call option, a put option gives its holder the right to sell the underlying asset by a
certain date for a prespecified price. Using the same notation as above, we arrive at the following
expression for the payoff h at maturity T from a European put option

h(ST ) = (K − ST )+ def= max {K − ST , 0}, (2)

or, more explicitly,

h(ST ) =
{

0 if ST ≥ K (option is abandoned),
K − ST if ST < K (option is exercised).

It follows immediately that the payoffs of call and put options satisfy the following simple but useful
equality

g(ST )− h(ST ) = (ST −K)+ − (K − ST )+ = ST −K. (3)

The last equality can be used, in particular, to derive the so-called put-call parity relationship for
option prices. Basically, put-call parity means that the price of a European put option is determined
by the price of a European call option with the same strike and expiry date, the current price of the
underlying asset, and the properly discounted value of the strike price.

1.1 One-period Spot Market

Let us start by considering an elementary example of an option contract.

Example 1.1 Assume that the current stock price is $280, and after three months the stock price
may either rise to $320 or decline to $260. We shall find the rational price of a 3-month European
call option with strike price K =$280, provided that the simple risk-free interest rate r for 3-month
deposits and loans is r = 5%.

Suppose that the subjective probability of the price rise is 0.2, and that of the fall is 0.8; these
assumptions correspond, loosely, to a so-called bear market. Note that the word subjective means
that we take the point of view of a particular individual. Generally speaking, the two parties involved
in an option contract may have (and usually do have) differing assessments of these probabilities.
To model a bull market one may assume, for example, that the first probability is 0.8, so that the
second is 0.2.

Let us focus first on the bear market case. The terminal stock price ST may be seen as a random
variable on a probability space Ω = {ω1, ω2} with a probability measure P given by

P{ω1} = 0.2 = 1−P{ω2}.

Formally, ST is a function ST : Ω → R+ given by the following formula

ST (ω) =
{

Su = 320, if ω = ω1,
Sd = 260, if ω = ω2.
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Consequently, the terminal option’s payoff X = CT = (ST −K)+ satisfies

CT (ω) =
{

Cu = 40, if ω = ω1,
Cd = 0, if ω = ω2.

Note that the expected value under P of the discounted option’s payoff equals

EP

(
(1 + r)−1CT

)
= 0.2× 40× (1.05)−1 = 7.62.

It is clear that the above expectation depends on the choice of the probability measure P; that is, it
depends on the investor’s assessment of the market. For a call option, the expectation corresponding
to the case of a bull market would be greater than that which assumes a bear market. In our example,
the expected value of the discounted payoff from the option under the bull market hypothesis equals
30.48. Still, to construct a reliable model of a financial market, one has to guarantee the uniqueness
of the price of any derivative security. This can be done by applying the concept of the so-called
replicating portfolio, which we will now introduce.

1.2 Replicating Portfolios

The two-state option pricing model presented below was developed independently by Sharpe (1978)
and Rendleman and Bartter (1979) (a point worth mentioning is that the ground-breaking papers
of Black and Scholes (1973) and Merton (1973), who examined the arbitrage pricing of options in a
continuous-time framework, were published five years earlier). The idea is to construct a portfolio at
time 0 which replicates exactly the option’s terminal payoff at time T . Let φ = φ0 = (α0, β0) ∈ R2

denote a portfolio of an investor with a short position in one call option. More precisely, let α0 stand
for the number of shares of stock held at time 0, and β0 be the amount of money deposited on a
bank account or borrowed from a bank. By Vt(φ) we denote the wealth of this portfolio at dates
t = 0 and t = T ; that is, the payoff from the portfolio φ at given dates. It should be emphasized
that once the portfolio is set up at time 0, it remains fixed until the terminal date T. Therefore, for
its wealth process V (φ) we have

V0(φ) = α0S0 + β0 and VT (φ) = α0ST + β0(1 + r). (4)

We say that a portfolio φ replicates the option’s terminal payoff whenever VT (φ) = CT , that is, if

VT (φ)(ω) =
{

V u(φ) = α0S
u + (1 + r)β0 = Cu, if ω = ω1,

V d(φ) = α0S
d + (1 + r)β0 = Cd, if ω = ω2.

For the data of Example 1.1, the portfolio φ is determined by the following system of linear equations
{

320 α0 + 1.05 β0 = 40,
260 α0 + 1.05 β0 = 0,

with unique solution α0 = 2/3 and β0 = −165.08. Observe that for every call we are short, we hold
α0 of stock1 and the dollar amount β0 in riskless bonds in the hedging portfolio. Put another way,
by purchasing shares and borrowing against them in the right proportion, we are able to replicate
an option position. (Actually, one can easily check that this property holds for any contingent claim
X which settles at time T .) It is natural to define the manufacturing cost C0 of a call option as the
initial investment needed to construct a replicating portfolio, i.e.,

C0 = V0(φ) = α0S0 + β0 = (2/3)× 280− 165.08 = 21.59.

It should be stressed that in order to determine the manufacturing cost of a call we did not need
to know the probability of the rise or fall of the stock price. In other words, it appears that

1We shall refer to the number of shares held for each call sold as the hedge ratio. Basically, to hedge means to
reduce risk by making transactions that reduce exposure to market fluctuations.
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the manufacturing cost is invariant with respect to individual assessments of market behavior. In
particular, it is identical under the bull and bear market hypotheses. To determine the rational price
of a call we have used the option’s strike price, the current value of the stock price, the range of
fluctuations in the stock price (that is, the future levels of the stock price), and the risk-free rate of
interest. The investor’s transactions and the corresponding cash flows may be summarized by the
following two exhibits

at time t = 0





one written call option C0,
α0 shares purchased −α0S0,
amount of cash borrowed β0,

and

at time t = T





payoff from the call option −CT ,
α0 shares sold α0ST ,
loan paid back −r̂β0,

where r̂ = 1+r. It should be observed that no net initial investment is needed to establish the above
portfolio; that is, the portfolio is costless. On the other hand, for each possible level of stock price
at time T, the hedge exactly breaks even on the option’s expiry date. Also, it is easy to verify that
if the call were not priced at $21.59, it would be possible for a sure profit to be gained, either by
the option’s writer (if the option’s price were greater than its manufacturing cost) or by its buyer
(in the opposite case). Still, the manufacturing cost cannot be seen as a fair price of a claim X,
unless the market model is arbitrage-free, in a sense examined below. Indeed, it may happen that
the manufacturing cost of a non-negative claim is a strictly negative number. Such a phenomenon
contradicts the usual assumption that it is not possible to make riskless profits.

1.3 Martingale Measure for a Spot Market

Although, as shown above, subjective probabilities are useless when pricing an option, probabilistic
methods play an important role in contingent claims valuation. They rely on the notion of a
martingale, which is, intuitively, a probabilistic model of a fair game. In order to apply the so-called
martingale method of derivative pricing, one has to find first a probability measure P∗ equivalent to
P, and such that the discounted (or relative) stock price process S∗, which is defined by the formula

S∗0 = S0, S∗T = (1 + r)−1ST ,

follows a P∗-martingale; that is, the equality S∗0 = EP∗(S∗T ) holds. Such a probability measure P∗

is called a martingale measure for the discounted stock price process S∗. In the case of a two-state
model, the probability measure P∗ is easily seen to be uniquely determined (provided it exists) by
the following linear equation

S0 = (1 + r)−1(p∗Su + (1− p∗)Sd), (5)

where p∗ = P∗{ω1} and 1− p∗ = P∗{ω2}. Solving this equation for p∗ yields

P∗{ω1} =
(1 + r)S0 − Sd

Su − Sd
, P∗{ω2} =

Su − (1 + r)S0

Su − Sd
. (6)

Let us now check that the price C0 coincides with C∗0 , where we write C∗0 to denote the expected
value under P∗ of an option’s discounted terminal payoff – that is

C∗0
def= EP∗

(
(1 + r)−1CT

)
= EP∗

(
(1 + r)−1(ST −K)+

)
.

Indeed, using the data of Example 1.1 we find p∗ = 17/30, so that

C∗0 = (1 + r)−1
(
p∗Cu + (1− p∗)Cd

)
= 21.59 = C0.
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Remarks. Observe that since the process S∗ follows a P∗-martingale, we may say that the discounted
stock price process may be seen as a fair game model in a risk-neutral economy – that is, in the
stochastic economy in which the probabilities of future stock price fluctuations are determined by
the martingale measure P∗. It should be stressed, however, that the fundamental idea of arbitrage
pricing is based solely on the existence of a portfolio that hedges perfectly the risk exposure related
to uncertain future prices of risky securities. Therefore, the probabilistic properties of the model are
not essential. In particular, we do not assume that the real-world economy is actually risk-neutral.
On the contrary, the notion of a risk-neutral economy should be seen rather as a technical tool. The
aim of introducing the martingale measure is twofold: first, it simplifies the explicit evaluation of
arbitrage prices of derivative securities. Second, it describes the arbitrage-free property of a given
pricing model for primary securities in terms of the behavior of relative prices. This approach is
frequently referred to as the partial equilibrium approach, as opposed to the general equilibrium
approach. Let us stress that in the latter theory the investors’ preferences, usually described in
stochastic models by means of their (expected) utility functions, play an important role.

To summarize, the notion of an arbitrage price for a derivative security does not depend on
the choice of a probability measure in a particular pricing model for primary securities. More
precisely, using standard probabilistic terminology, this means that the arbitrage price depends on
the support of a subjective probability measure P, but is invariant with respect to the choice of
a particular probability measure from the class of mutually equivalent probability measures. In
financial terminology, this can be restated as follows: all investors agree on the range of future
price fluctuations of primary securities; they may have different assessments of the corresponding
subjective probabilities, however.

1.4 Absence of Arbitrage

Let us consider a simple two-state, one-period, two-security market model defined on a probability
space Ω = {ω1, ω2} equipped with the σ-fields F0 = {∅,Ω}, FT = 2Ω (i.e., FT contains all subsets
of Ω), and a probability measure P on (Ω,FT ) such that P{ω1} and P{ω2} are strictly positive
numbers. The first security is a stock whose price process is modelled as a strictly positive discrete-
time process S = (St) t∈{0,T}. We assume that the process S is (Ft)-adapted, i.e., that the random
variables St are Ft-measurable for t ∈ {0, T}. This means that S0 is a real number, and

ST (ω) =
{

Su if ω = ω1,
Sd if ω = ω2,

where, without loss of generality, Su > Sd. The second security is a riskless bond whose price
process is B0 = 1, BT = 1+ r for some real r ≥ 0. Let Φ stand for the linear space of all stock-bond
portfolios φ = φ0 = (α0, β0), where α0 and β0 are real numbers (clearly, the class Φ may be thus
identified with R2). We shall consider the pricing of contingent claims in a security market model
M = (S, B, Φ). We shall now check that an arbitrary contingent claim X which settles at time T
(i.e., any FT -measurable real-valued random variable) admits a unique replicating portfolio in our
market model. In other words, an arbitrary contingent claim X is attainable in the market model
M. Indeed, if

X(ω) =
{

Xu if ω = ω1,
Xd if ω = ω2,

then the replicating portfolio φ is determined by the following system of linear equations
{

α0S
u + (1 + r)β0 = Xu,

α0S
d + (1 + r)β0 = Xd,

(7)

which admits a unique solution

α0 =
Xu −Xd

Su − Sd
, β0 =

XdSu −XuSd

(1 + r)(Su − Sd)
, (8)
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for arbitrary values of Xu and Xd. Consequently, an arbitrary contingent claim X admits a unique
manufacturing cost π0(X) in M which is given by the formula

π0(X) def= V0(φ) = α0S0 + β0 =
Xu −Xd

Su − Sd
S0 +

XdSu −XuSd

(1 + r)(Su − Sd)
. (9)

As already mentioned, the manufacturing cost of a strictly positive contingent claim may appear
to be a negative number, in general. If this were the case, there would be a profitable riskless
trading strategy (so-called arbitrage opportunity ) involving only the stock and riskless borrowing
and lending. To exclude such situations, which are clearly inconsistent with any broad notion of a
rational market equilibrium (as it is common to assume that investors are non-satiated, meaning
that they prefer more wealth to less), we have to impose further essential restrictions on our market
model.

Definition 1.1 We say that a security pricing model M is arbitrage-free if there is no portfolio
φ ∈ Φ for which

V0(φ) = 0, VT (φ) ≥ 0 and P{VT (φ) > 0} > 0. (10)

A portfolio φ for which the set (10) of conditions is satisfied is called an arbitrage opportunity.
A strong arbitrage opportunity is a portfolio φ for which

V0(φ) < 0 and VT (φ) ≥ 0. (11)

It is customary to take either (10) or (11) as the definition of an arbitrage opportunity. Note,
however, that both notions are not necessarily equivalent. We are in a position to introduce the
notion of an arbitrage price; that is, the price derived using the no-arbitrage arguments.

Definition 1.2 Suppose that the security market M is arbitrage-free. Then the manufacturing
cost π0(X) is called the arbitrage price of X at time 0 in security market M.

As the next result shows, under the absence of arbitrage in a market model, the manufacturing
cost may be seen as the unique rational price of a given contingent claim – that is, the unique price
compatible with any rational market equilibrium.

Proposition 1.1 Suppose that the spot market M = (S, B, Φ) is arbitrage-free. Let H stand for the
rational price process of some attainable contingent claim X; more explicitly, H0 ∈ R and HT = X.
Let ΦH denote the class of all portfolios in stock, bond and derivative security H. Then the spot
market (S, B, H,ΦH) is arbitrage-free if and only if H0 = π0(X).

Proof. Since the proof is straightforward, it is left to the reader. 2

1.5 Optimality of Replication

Let us show that replication is, in a sense, an optimal way of hedging. Firstly, we say that a portfolio
φ perfectly hedges against X if VT (φ) ≥ X, that is, whenever

{
α0S

u + (1 + r)β0 ≥ Xu,
α0S

d + (1 + r)β0 ≥ Xd.
(12)

The minimal initial cost of a perfect hedging portfolio against X is called the seller’s price of X, and
it is denoted by πs

0(X). Let us check that πs
0(X) = π0(X). By denoting c = V0(φ), we may rewrite

(12) as follows {
α0(Su − S0(1 + r)) + c(1 + r) ≥ Xu,
α0(Sd − S0(1 + r)) + c(1 + r) ≥ Xd.

(13)

It is trivial to check that the minimal c ∈ R for which (13) holds is actually that value of c for
which inequalities in (13) become equalities. This means that the replication appears to be the least
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expensive way of perfect hedging for the seller of X. Let us now consider the other party of the
contract, i.e., the buyer of X. Since the buyer of X can be seen as the seller of −X, the associated
problem is to minimize c ∈ R, subject to the following constraints

{
α0(Su − S0(1 + r)) + c(1 + r) ≥ −Xu,
α0(Sd − S0(1 + r)) + c(1 + r) ≥ −Xd.

It is clear that the solution to this problem is πs(−X) = −π(X) = π(−X), so that replication
appears to be optimal for the buyer also. We conclude that the least price the seller is ready to
accept for X equals the maximal amount the buyer is ready to pay for it. If we define the buyer’s
price of X, denoted by πb

0(X), by setting πb
0(X) = −πs

0(−X), then

πs
0(X) = πb

0(X) = π0(X);

that is, all prices coincide. This shows that in a two-state, arbitrage-free model, the arbitrage price
of any contingent claim can be defined using the optimality criterion. It appears that such an
approach to arbitrage pricing can be extended to other models; we prefer, however, to define the
arbitrage price as that value of the price which excludes arbitrage opportunities. Indeed, the fact
that observed market prices are close to arbitrage prices predicted by a suitable stochastic model
should be explained by the presence of the traders known as arbitrageurs2 on financial markets,
rather than by the clever investment decisions of most market participants.

The next proposition explains the role of the so-called risk-neutral economy in arbitrage pricing
of derivative securities. Observe that the important role of risk preferences in classic equilibrium
asset pricing theory is left aside in the present context. Notice, however, that the use of a martingale
measure P∗ in arbitrage pricing corresponds to the assumption that all investors are risk-neutral,
meaning that they do not differentiate between all riskless and risky investments with the same
expected rate of return. The arbitrage valuation of derivative securities is thus done as if an economy
actually were risk-neutral. Formula (14) shows that the arbitrage price of a contingent claim X can
be found by first modifying the model so that the stock earns at the riskless rate, and then computing
the expected value of the discounted claim (to the best of our knowledge, this method of computing
the price was discovered in Cox and Ross (1976)).

Proposition 1.2 The spot market M = (S, B, Φ) is arbitrage-free if and only if the discounted stock
price process S∗ admits a martingale measure P∗ equivalent to P. In this case, the arbitrage price
at time 0 of any contingent claim X which settles at time T is given by the risk-neutral valuation
formula

π0(X) = EP∗
(
(1 + r)−1X

)
, (14)

or explicitly

π0(X) =
S0(1 + r)− Sd

Su − Sd

Xu

1 + r
+

Su − S0(1 + r)
Su − Sd

Xd

1 + r
. (15)

Proof. We know already that the martingale measure for S∗ equivalent to P exists if and only if
the unique solution p∗ of equation (5) satisfies 0 < p∗ < 1. Suppose there is no equivalent martingale
measure for S∗; for instance, assume that p∗ ≥ 1. Our aim is to construct explicitly an arbitrage
opportunity in the market model (S,B, Φ). To this end, observe that the inequality p∗ ≥ 1 is
equivalent to (1 + r)S0 ≥ Su (recall that Su is always greater than Sd). The portfolio φ = (−1, S0)
satisfies V0(φ) = 0 and

VT (φ) =
{ −Su + (1 + r)S0 ≥ 0 if ω = ω1,
−Sd + (1 + r)S0 > 0 if ω = ω2,

so that φ is indeed an arbitrage opportunity. On the other hand, if p∗ ≤ 0, then the inequality
Sd ≥ (1 + r)S0 holds, and it is easily seen that in this case the portfolio ψ = (1,−S0) = −φ is an

2An arbitrageur is that market participant who consistently uses the price discrepancies to make (almost) risk-free
profits. Arbitrageurs are relatively few, but they are far more active than most long-term investors.
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arbitrage opportunity. Finally, if 0 < p∗ < 1 for any portfolio φ satisfying V0(φ) = 0, then by virtue
of (9) and (6) we get

p∗V u(φ) + (1− p∗)V d(φ) = 0

so that V d(φ) < 0 when V u(φ) > 0 and V d(φ) > 0 if V u(φ) < 0. This shows that there are no
arbitrage opportunities in M when 0 < p∗ < 1. To prove formula (14) it is enough to compare it
with (9). Alternatively, we may observe that for the unique portfolio φ = (α0, β0) which replicates
the claim X, we have

EP∗
(
(1 + r)−1X

)
= EP∗

(
(1 + r)−1VT (φ)

)
= EP∗(α0S

∗
T + β0)

= α0S
∗
0 + β0 = V0(φ) = π0(X),

so that we are done. 2

Remarks. The choice of the bond price process as a discount factor is not essential. Suppose, on the
contrary, that we have chosen the stock price S as a numeraire. In other words, we now consider
the bond price B discounted by the stock price S

B∗
t = Bt/St

for t ∈ {0, T}. The martingale measure P̄ for the process B∗ is determined by the equality B∗
0 =

E P̄(B∗
T ), or explicitly

p̄
1 + r

Su
+ q̄

1 + r

Sd
=

1
S0

, (16)

where q̄ = 1− p̄. One finds that

P̄{ω1} = p̄ =
( 1

Sd
− 1

(1 + r)S0

) SuSd

Su − Sd
(17)

and

P̄{ω2} = q̄ =
( 1

Su
− 1

(1 + r)S0

) SuSd

Sd − Su
. (18)

It is easy to show that the properly modified version of the risk-neutral valuation formula has the
following form

π0(X) = S0 E P̄

(
S−1

T X
)
, (19)

where X is a contingent claim which settles at time T. It appears that in some circumstances the
choice of the stock price as a numeraire is more convenient than that of the savings account.

Let us apply this approach to the call option of Example 1.1. One finds easily that p̄ = 0.62, and
thus formula (19) gives

Ĉ0 = S0 E P̄

(
S−1

T (ST −K)+
)

= 21.59 = C0,

as expected.

1.6 Put Option

We refer once again to Example 1.1. However, we shall now focus on a European put option instead
of a call option. Since the buyer of a put option has the right to sell a stock at a given date T, the
terminal payoff from the option is now PT = (K − ST )+, i.e.,

PT (ω) =
{

Pu = 0, if ω = ω1,
P d = 20, if ω = ω2,

where we have taken, as before, K=$280. The portfolio φ = (α0, β0) which replicates the European
put option is thus determined by the following system of linear equations

{
320 α0 + 1.05 β0 = 0,
260 α0 + 1.05 β0 = 20,
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so that α0 = −1/3 and β0 = 101.59. Consequently, the arbitrage price P0 of the European put
option equals

P0 = −(1/3)× 280 + 101.59 = 8.25.

Notice that the number of shares in a replicating portfolio is negative. This means that an option
writer who wishes to hedge risk exposure should sell short at time 0 the number −α0 = 1/3 shares of
stock for each sold put option. The proceeds from the short-selling of shares, as well as the option’s
premium, are invested in an interest-earning account. To find the arbitrage price of the put option
we may alternatively apply Proposition 1.2. By virtue of (14), with X = PT , we get

P0 = EP∗
(
(1 + r)−1PT

)
= 8.25.

Finally, the put option value can also be found by applying the following relationship between the
prices of call and put options.

Corollary 1.1 The following put-call parity relationship is valid

C0 − P0 = S0 − (1 + r)−1K. (20)

Proof. The formula is an immediate consequence of equality (3) and the pricing formula (14) applied
to the claim ST −K. 2

It is worthwhile to mention that relationship (20) is universal – that is, it does not depend on
the choice of the model (the only assumption we need to make is the additivity of the price). Using
the put-call parity, we can calculate once again the arbitrage price of the put option. Formula (20)
yields immediately

P0 = C0 − S0 + (1 + r)−1K = 8.25.

For ease of further reference, we shall write down explicit formulae for the call and put price in
the one-period, two-state model. We assume, as usual, that Su > K > Sd. Then

C0 =
S0(1 + r)− Sd

Su − Sd

Su −K

1 + r
, (21)

and

P0 =
Su − S0(1 + r)

Su − Sd

K − Sd

1 + r
. (22)

2 Futures Call and Put Options

We will first describe very succinctly the main features of futures contracts, which are reflected in
stochastic models of futures markets to be developed later. As in the previous section, we will focus
mainly on the arbitrage pricing of European call and put options; clearly, instead of the spot price
of the underlying asset, we will now consider its futures price. The model of futures prices we adopt
here is quite similar to the one used to describe spot prices. Still, due to the specific features of
futures contracts used to set up a replicating strategy, one has to modify significantly the way in
which the payoff from a portfolio is defined.

2.1 Futures Contracts and Futures Prices

A futures contract is an agreement to buy or sell an asset at a certain date in the future for a certain
price. The important feature of these contracts is that they are traded on exchanges. Consequently,
the authorities need to define precisely all the characteristics of each futures contract in order to
make trading possible. More importantly, the futures price – the price at which a given futures
contract is entered into – is determined on a given futures exchange by the usual law of demand
and supply (in a similar way as for spot prices of listed stocks). Futures prices are therefore settled
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daily and the quotations are reported in the financial press. A futures contract is referred to by its
delivery month, however an exchange specifies the period within that month when delivery must
be made. The exchange specifies the amount of the asset to be delivered for one contract, as well
as some additional details when necessary (e.g., the quality of a given commodity or the maturity
of a bond). From our perspective, the most fundamental feature of a futures contract is the way
the contract is settled. The procedure of daily settlement of futures contracts is called marking to
market. A futures contract is worth zero when it is entered into; however, each investor is required
to deposit funds into a margin account. The amount that should be deposited when the contract
is entered into is known as the initial margin. At the end of each trading day, the balance of the
investor’s margin account is adjusted in a way that reflects daily movements of futures prices. To
be more specific, if an investor assumes a long position, and on a given day the futures price rises,
the balance of the margin account will also increase. Conversely, the balance of the margin account
of any party with a short position in this futures contract will be properly reduced. Intuitively, it is
thus possible to argue that futures contracts are actually closed out after each trading day, and then
start afresh the next trading day. Obviously, to offset a position in a futures contract, an investor
enters into the opposite trade to the original one. Finally, if the delivery period is reached, the
delivery is made by the party with a short position.

2.2 One-period Futures Market

It will be convenient to start this section with a simple example which, in fact, is a straightforward
modification of Example 1.1 to a futures market.

Example 2.1 Let ft = fS(t, T ∗) be a one-period process which models the futures price of a certain
asset S, for the settlement date T ∗ ≥ T. We assume that f0 = 280, and

fT (ω) =
{

fu = 320, if ω = ω1,
fd = 260, if ω = ω2,

where T = 3 months.3 We consider a 3-month European futures call option with strike price
K =$280. As before, we assume that the simple risk-free interest rate for 3-month deposits and
loans is r = 5%.

The payoff from the futures call option Cf
T = (fT −K)+ equals

Cf
T (ω) =

{
Cfu = 40, if ω = ω1,
Cfd = 0, if ω = ω2.

A portfolio φ which replicates the option is composed of α0 futures contracts and β0 units of cash in-
vested in riskless bonds (or borrowed). The wealth process V f

t (φ), t ∈ {0, T}, of this portfolio equals
V f

0 (φ) = β0, since futures contracts are worthless when they are first entered into. Furthermore, the
terminal wealth of φ is

V f
T (φ) = α0 (fT − f0) + (1 + r)β0, (23)

where the first term on the right-hand side represents gains (or losses) from the futures contract,
and the second corresponds to a savings account (or loan). Note that (23) reflects the fact that
futures contracts are marked to market daily (that is, after each period in our model). A portfolio
φ = (α0, β0) is said to replicate the option when V f

T = Cf
T , or more explicitly, if the equalities

V f
T (ω) =

{
α0(fu − f0) + (1 + r)β0 = Cfu, if ω = ω1,
α0(fd − f0) + (1 + r)β0 = Cfd, if ω = ω2

3Notice that in the present context, the knowledge of the settlement date T ∗ of a futures contract is not essential.
It is sufficient to assume that T ∗ ≥ T.
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are satisfied. For Example 2.1, this gives the following system of linear equations

{
40 α0 + 1.05 β0 = 40,
−20 α0 + 1.05 β0 = 0,

yielding α0 = 2/3 and β0 = 12.70. The manufacturing cost of a futures call option is thus Cf
0 =

V f
0 (φ) = β0 = 12.70. Similarly, the unique portfolio replicating a sold put option is determined by

the following conditions {
40 α0 + 1.05 β0 = 0,

−20 α0 + 1.05 β0 = 20,

so that α0 = −1/3 and β0 = 12.70 in this case. Consequently, the manufacturing costs of put and
call futures options are equal in our example. As we shall see soon, this is not a pure coincidence;
in fact, by virtue of formula (29) below, the prices of call and put futures options are equal when
the option’s strike price coincides with the initial futures price of the underlying asset. The above
considerations may be summarized by means of the following exhibits (note that β0 is a positive
number)

at time t = 0





one sold futures option Cf
0 ,

futures contracts 0,

cash deposited in a bank −β0 = −Cf
0 ,

and

at time t = T





option’s payoff −Cf
T ,

profits/losses from futures α0 (fT − f0),
cash withdrawal r̂β0,

where, as before, r̂ = 1 + r.

2.3 Martingale Measure for a Futures Market

We are looking now for a probability measure P̃ which makes the futures price process (with no
discounting) follow a P̃-martingale. A probability P̃, if it exists, is thus determined by the equality

f0 = E P̃

(
fT

)
= p̃ fu + (1− p̃) fd. (24)

It is easily seen that

P̃{ω1} = p̃ =
f0 − fd

fu − fd
, P̃{ω2} = 1− p̃ =

fu − f0

fu − fd
. (25)

Using the data of Example 2.1, one finds easily that p̃ = 1/3. Consequently, the expected value
under the probability P̃ of the discounted payoff from the futures call option equals

C̃f
0 = E P̃

(
(1 + r)−1(fT −K)+

)
= 12.70 = Cf

0 .

This illustrates the fact that the martingale approach may be used also in the case of futures markets,
with a suitable modification of the notion of a martingale measure.

Remarks. Using the traditional terminology of mathematical finance, we may conclude that the
risk-neutral futures economy is characterized by the fair-game property of the process of a futures
price. Remember that the risk-neutral spot economy is the one in which the discounted stock price
(as opposed to the stock price itself) models a fair game.
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2.4 Absence of Arbitrage

In this subsection, we shall study a general two-state, one-period model of a futures price. We
consider the filtered probability space (Ω, (Ft)t∈{0,T},P) introduced in Sect. 1.4. The first process,
which intends to model the dynamics of the futures price of a certain asset for the fixed settlement
date T ∗ ≥ T, is an adapted and strictly positive process ft = fS(t, T ∗), t = 0, T. More specifically,
f0 is assumed to be a real number, and fT is the following random variable

fT (ω) =
{

fu, if ω = ω1,
fd, if ω = ω2,

where, by convention, fu > fd. The second security is, as in the case of a spot market, a riskless
bond whose price process is B0 = 1, BT = 1 + r for some real r ≥ 0. Let Φf stand for the linear
space of all futures contracts-bonds portfolios φ = φ0 = (α0, β0); it may be, of course, identified
with the linear space R2. The wealth process V f (φ) of any portfolio equals

V0(φ) = β0, and V f
T (φ) = α0(fT − f0) + (1 + r)β0 (26)

(it is useful to compare these formulae with (4)). We shall study the valuation of derivatives in the
futures market model Mf = (f, B, Φf ). It is easily seen that an arbitrary contingent claim X which
settles at time T admits a unique replicating portfolio φ ∈ Φf . Put another way, all contingent
claims which settle at time T are attainable in the market model Mf . In fact, if X is given by the
formula

X(ω) =
{

Xu if ω = ω1,
Xd if ω = ω2,

then its replicating portfolio φ ∈ Φf may be found by solving the following system of linear equations
{

α0(fu − f0) + (1 + r)β0 = Xu,
α0(fd − f0) + (1 + r)β0 = Xd.

(27)

The unique solution of (27) is

α0 =
Xu −Xd

fu − fd
, β0 =

Xu(f0 − fd) + Xd(fu − f0)
(1 + r)(fu − fd)

. (28)

Consequently, the manufacturing cost πf
0 (X) in Mf equals

πf
0 (X) def= V f

0 (φ) = β0 =
Xu(f0 − fd) + Xd(fu − f0)

(1 + r)(fu − fd)
. (29)

We say that a modelMf of the futures market is arbitrage-free if there are no arbitrage opportunities
in the class Φf of trading strategies. The following simple result provides necessary and sufficient
conditions for the arbitrage-free property of Mf .

Proposition 2.1 The futures market Mf = (f, B, Φf ) is arbitrage-free if and only if the process f
that models the futures price admits a (unique) martingale measure P̃ equivalent to P. In this case,
the arbitrage price at time 0 of any contingent claim X which settles at time T equals

πf
0 (X) = E P̃

(
(1 + r)−1X

)
, (30)

or explicitly

πf
0 (X) =

f0 − fd

fu − fd

Xu

1 + r
+

fu − f0

fu − fd

Xd

1 + r
. (31)
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Proof. If there is no martingale measure for f which is equivalent to P, we have either p̃ ≥ 1 or
p̃ ≤ 0. In the first case, we have f0−fd ≥ fu−fd and thus f0 ≥ fu > fd. Consequently, a portfolio
φ = (−1, 0) is an arbitrage opportunity. Similarly, when p̃ ≤ 0 the inequalities f0 ≤ fd < fu are
valid. Therefore the portfolio φ = (1, 0) is an arbitrage opportunity. Finally, if 0 < p̃ < 1 and for
some φ ∈ Φf we have V f

0 (φ) = 0, then it follows from (29) that

f0 − fd

fu − fd
V fu +

fu − f0

fu − fd
V fd = 0

so that V fd < 0 if V fu > 0, and V fu < 0 when V fd > 0. This shows that the market model
Mf is arbitrage-free if and only if the process f admits a martingale measure equivalent to P. The
valuation formula (30) now follows by (25)–(29). 2

When the price of the futures call option is already known, in order to find the price of the
corresponding put option one may use the following relation, which is an immediate consequence of
equality (3) and the pricing formula (30)

Cf
0 − P f

0 = (1 + r)−1(f0 −K). (32)

It is now obvious that the equality Cf
0 = P f

0 is valid if and only if f0 = K; that is, when the current
futures price and the strike price of the option are equal. Equality (32) is referred to as the put-call
parity relationship for futures options.

2.5 One-period Spot/Futures Market

Consider an arbitrage-free, one-period spot market (S,B, Φ) described in Sect. 1. Moreover, let
ft = fS(t, T ), t ∈ {0, T} be the process of futures prices with the underlying asset S and for the
maturity date T. In order to preserve consistency with the financial interpretation of the futures
price, we have to assume that fT = ST . Our aim is to find the right value f0 of the futures price
at time 0; that is, that level of the price f0 which excludes arbitrage opportunities in the combined
spot/futures market. In such a market, trading in stocks, bonds, as well as entering into futures
contracts is allowed.

Corollary 2.1 The futures price at time 0 for the delivery date T of the underlying asset S which
makes the spot/futures market arbitrage-free equals f0 = (1 + r)S0.

Proof. Suppose an investor enters at time 0 into one futures contract. The payoff of his position
at time T corresponds to a time T contingent claim X = fT − f0 = ST − f0. Since it costs nothing
to enter a futures contract we should have

π0(X) = π0(ST − f0) = 0,

or equivalently
π0(X) = St − (1 + r)−1f0 = 0.

This proves the asserted formula. Alternatively, one can check that if the futures price f0 were
different from (1 + r)S0, this would lead to arbitrage opportunities in the spot/futures market. 2

3 Forward Contracts

A forward contract is an agreement, signed at the initial date 0, to buy or sell an asset at a certain
future time T (called delivery date or maturity in what follows) for a prespecified price K, referred
to as the delivery price. In contrast to stock options and futures contracts, forward contracts are not
traded on exchanges. By convention, the party who agrees to buy the underlying asset at time T for
the delivery price K is said to assume a long position in a given contract. Consequently, the other
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party, who is obliged to sell the asset at the same date for the price K, is said to assume a short
position. Since a forward contract is settled at maturity and a party in a long position is obliged to
buy an asset worth ST at maturity for K, it is clear that the payoff from the long position (from the
short position, respectively) in a given forward contract with a stock S being the underlying asset
corresponds to the time T contingent claim X (−X, respectively), where

X = ST −K. (33)

It should be emphasized that there is no cash flow at the time the forward contract is entered into.
In other words, the price (or value) of a forward contract at its initiation is zero. Notice, however,
that for t > 0, the value of a forward contract may be negative or positive. As we shall now see, a
forward contract is worthless at time 0 provided that a judicious choice of the delivery price K is
made.

Before we end this section, we shall find the rational delivery price for a forward contract. To
this end, let us introduce first the following definition which is, of course, consistent with typical
features of a forward contract. Recall that, typically, there is no cash flow at the initiation of a
forward contract.

Definition 3.1 The delivery price K that makes a forward contract worthless at initiation is called
the forward price of an underlying financial asset S for the settlement date T.

Note that we use here the adjective financial in order to emphasize that the storage costs, which
have to be taken into account when studying forward contracts on commodities, are neglected. In
the case of a dividend-paying stock, in the calculation of the forward price, it is enough to substitute
S0 with S0 − Î0, where Î0 is the present value of all future dividend payments during the contract’s
lifetime.

Proposition 3.1 Assume that the one-period, two-state security market model (S, B, Φ) is arbitrage-
free. Then the forward price at time 0 for the settlement date T of one share of stock S equals
FS(0, T ) = (1 + r)S0.

Proof. We shall apply the martingale method of Proposition 1.2. By applying formulae (14) and
(33), we get

π0(X) = EP∗
(
r̂−1X

)
= EP∗(S∗T )− r̂−1K = S0 − r̂−1K = 0, (34)

where r̂ = 1 + r. It is now apparent that FS(0, T ) = (1 + r)S0. 2

By combining Corollary 2.1 with the above proposition, we conclude that in a one-period model
of a spot market, the futures and forward prices of financial assets for the same settlement date are
equal.

4 Options of American Style

An option of American style (or briefly, an American option) is an option contract in which not
only the decision whether to exercise the option or not, but also the choice of the exercise time,
is at the discretion of the option’s holder. The exercise time cannot be chosen after the option’s
expiry date T. Hence, in our simple one-period model, the strike price can either coincide with the
initial date 0, or with the terminal date T. Notice that the value (or the price) at the terminal
date of the American call or put option written on any asset equals the value of the corresponding
European option with the same strike price K. Therefore, the only unknown quantity is the price
of the American option at time 0. In view of the early exercise feature of the American option, the
concept of perfect replication of the terminal option’s payoff is not adequate for valuation purposes.
To determine this value, we shall make use of the general rule of absence of arbitrage in the market
model. By definition, the arbitrage price at time 0 of the American option should be set in such
a way that trading in American options would not destroy the arbitrage-free feature the market.



Marek Rutkowski 15

We will first show that the American call written on a stock that pays no dividends during the
option’s lifetime is always equivalent to the European call; that is, that both options necessarily
have identical prices at time 0. As we shall see in what follows, such a property is not always true
in the case of American put options; that is, American and European puts are not equivalent, in
general.

We place ourselves once again within the framework of a one-period spot market M = (S, B, Φ),
as specified in Sect. 1.1. It will be convenient to assume that European options are traded securities
in our market. For t = 0, T, let us denote by Ca

t and P a
t the arbitrage price at time t of the

American call and put, respectively. It is obvious that Ca
T = CT and P a

T = PT . As mentioned
earlier, both arbitrage prices Ca

0 and P a
0 will be determined using the following property: if the

market M = (S, B, Φ) is arbitrage-free, then the market with trading in stocks, bonds and American
options should remain arbitrage-free. It should be noted that it is not evident a priori that the last
property determines in a unique way the values of Ca

0 and P a
0 . We assume throughout that the

inequalities Sd < S0(1 + r) < Su hold and the strike price satisfies Sd < K < Su. Otherwise, either
the market model would not be arbitrage-free, or valuation of the option would be a trivial matter.

Proposition 4.1 Assume that the risk-free interest rate r is a non-negative real number. Then the
arbitrage price Ca

0 of an American call option in the arbitrage-free market model M = (S,B, Φ)
coincides with the price C0 of the European call option with the same strike price K.

Proof. Assume, on the contrary, that Ca
0 6= C0. Suppose first that Ca

0 > C0. Notice that the
arbitrage price C0 satisfies

C0 = p∗
Su −K

1 + r
=

(1 + r)S0 − Sd

Su − Sd

Su −K

1 + r
> S0 −K, (35)

if r ≥ 0. It is now straightforward to check that there exists an arbitrage opportunity in the
market. In fact, to create a riskless profit, it is sufficient to sell the American call option at Ca

0 ,
and simultaneously buy the European call option at C0. If European options are not traded, one
may, of course, create a replicating portfolio for the European call at initial investment C0. The
above portfolio is easily seen to lead to a riskless profit, independently from the decision regarding
the exercise time made by the holder of the American call. If, on the contrary, the price Ca

0 were
strictly smaller than C0, then by selling European calls and buying American calls, one would be
able to create a profitable riskless portfolio. 2

It is worthwhile to observe that inequality (35) is valid in a more general setup. Indeed, if
r ≥ 0, S0 > K, and ST is a P∗-integrable random variable, then we have always

EP∗((1 + r)−1(ST −K)+) ≥
(
EP∗((1 + r)−1ST )− (1 + r)−1K

)+

= (S0 − (1 + r)−1K)+ ≥ S0 −K,

where the first inequality follows by Jensen’s inequality. Notice that in the case of the put option
we get merely

EP∗((1 + r)−1(K − ST )+) ≥
(
EP∗((1 + r)−1K − (1 + r)−1ST )

)+

= ((1 + r)−1K − S0)+ > K − S0,

where the last inequality holds provided that −1 < r < 0. If r = 0, we obtain

EP∗((1 + r)−1(K − ST )+) = K − S0.

Finally, if r > 0, no obvious relationship between P0 and S0 −K is available. This feature suggests
that the counterpart of Proposition 4.1 – the case of American put – should be more interesting.
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Proposition 4.2 Assume that r > 0. Then P a
0 = P0 if and only if the inequality

K − S0 ≤ Su − (1 + r)S0

Su − Sd

K − Sd

1 + r
(36)

is valid. Otherwise, P a
0 = K − S0 > P0. If r = 0, then invariably P a

0 = P0.

Proof. In view of (22), it is clear that inequality (36) is equivalent to P0 ≥ K − S0. Suppose first
that the last inequality holds. If, in addition, P a

0 > P0 (P a
0 < P0, respectively), by selling the

American put and buying the European put (by buying the American put and selling the European
put, respectively) one creates a profitable riskless strategy. Hence, P a

0 = P0 in this case.4 Suppose
now that (36) fails to hold – that is, P0 < K − S0, and assume that P a

0 6= K − S0. We wish to
show that P a

0 should be set to be K − S0, otherwise arbitrage opportunities arise. Actually, if P a
0

were strictly greater that K − S0, the seller of an American put would be able to lock in a profit
by perfectly hedging exposure using the European put acquired at a strictly lower cost P0. If, on
the contrary, inequality P a

0 < K − S0 were true, it would be profitable to buy the American put
and exercise it immediately. Summarizing, if (36) fails to hold, the arbitrage price of the American
put is strictly greater than the price of the European put. Finally, one verifies easily that if the
holder of the American put fails to exercise it at time 0, the option’s writer is still able to lock in
a profit. Hence, if (36) fails to hold, the American put should be exercised immediately, otherwise
arbitrage opportunities would arise in the market. For the last statement, observe that if r = 0,
then inequality (36), which now reads

K − S0 ≤ Su − S0

Su − Sd
(K − Sd),

is easily seen to be valid (it is enough to take K = Sd and K = Su). 2

The above results suggest the following general “rational” exercise rule in a discrete-time frame-
work: at any time t before the option’s expiry, find the maximal expected payoff over all admissible
exercise rules and compare the outcome with the payoff obtained by exercising the option immedi-
ately. If the latter value is greater, exercise the option immediately, otherwise go one step further. In
fact, one checks easily that the price at time 0 of an American call or put option may be computed
as the maximum expected value of the payoff over all exercises, provided that the expectation in
question is taken under the martingale probability measure. The last feature distinguishes arbitrage
pricing of American options from the typical optimal stopping problems, in which maximization of
expected payoffs takes place under a subjective (or actual) probability measure rather than under
an artificial martingale measure. We conclude that a simple argument that the rational option’s
holder will always try to maximize the expected payoff of the option at exercise is not sufficient to
determine arbitrage prices of American claims. A more precise statement would read: the American
put option should be exercised by its holder at the same date as it is exercised by a risk-neutral
individual whose objective is to maximize the discounted expected payoff of the option; otherwise
arbitrage opportunities would arise in the market. It will be useful to formalize the concept of an
American contingent claim.

Definition 4.1 A contingent claim of American style (or shortly, American claim) is a pair Xa =
(X0, XT ), where X0 is a real number and XT is a random variable. We interpret X0 and XT as the
payoffs received by the holder of the American claim Xa if he chooses to exercise it at time 0 and
at time T, respectively.

Notice that in our present setup, the only admissible exercise times are the initial date and the
expiry date, say τ0 = 0 and τ1 = T. By convention, we say that an option is exercised at expiry date
T if it is not exercised prior to that date, even when its terminal payoff equals zero (so that in fact
the option is abandoned). We assume also, for simplicity, that T = 1. Then we may formulate the
following corollary to Propositions 4.1–4.2, whose proof is left as exercise.

4To be formal, we need to check that no arbitrage opportunities are present if P a
0 = P0 and (36) holds.
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Corollary 4.1 The arbitrage prices of an American call and an American put option in the arbitrage-
free market model M = (S, B, Φ) are given by

Ca
0 = max

τ∈T
EP∗

(
(1 + r)−τ (Sτ −K)+

)

and
P a

0 = max
τ∈T

EP∗
(
(1 + r)−τ (K − Sτ )+

)

respectively, where T denotes the class of all exercise times. More generally, if Xa = (X0, XT ) is
an arbitrary contingent claim of American style, then its arbitrage price π(Xa) in M = (S,B, Φ)
equals

π0(Xa) = max
τ∈T

EP∗
(
(1 + r)−τXτ

)
, πT (Xa) = XT .

4.1 Universal No-arbitrage Inequalities

We shall now derive universal inequalities that are necessary for absence of arbitrage in the market.
It is clear that the following property is valid in any discrete- or continuous-time, arbitrage-free
market.

Price monotonicity rule. In any model of an arbitrage-free market, if XT and YT are two Euro-
pean contingent claims, where XT ≥ YT , then πt(XT ) ≥ πt(YT ) for every t ∈ [0, T ], where πt(XT )
and πt(YT ) denote the arbitrage prices at time t of XT and YT , respectively. Moreover, if XT > YT ,
then πt(XT ) > πt(YT ) for every t ∈ [0, T ].

For the sake of notational convenience, a constant (non-negative) rate r will now be interpreted
as a continuously compounded rate of interest. Hence, the price at time t of one dollar to be received
at time T ≥ t equals e−r(T−t) ; in other words, the savings account process equals Bt = ert for every
t ∈ [0, T ].

Proposition 4.3 Let Ct and Pt (Ca
t and P a

t , respectively) stand for the arbitrage prices at time t
of European (American, respectively) call and put options, with strike price K and expiry date T.
Then the following inequalities are valid for every t ∈ [0, T ]

(St −Ke−r(T−t))+ ≤ Ct = Ca
t ≤ St, (37)

(Ke−r(T−t) − St)+ ≤ Pt ≤ K, (38)

and
(K − St)+ ≤ P a

t ≤ K. (39)

The put-call parity relationship, which in the case of European options reads

Ct − Pt = St −Ke−r(T−t), (40)

takes, in the case of American options, the form of the following inequalities

St −K ≤ Ca
t − P a

t ≤ St −Ke−r(T−t). (41)

Proof. All inequalities may be derived by constructing appropriate portfolios at time t and holding
them to the terminal date. Let us consider, for instance, the first one. Consider the following
portfolios, A and B. Portfolio A consists of one European call and Ke−r(T−t) of cash; portfolio B
contains only one share of stock. The value of the first portfolio at time T equals

CT + K = (ST −K)+ + K = max{ST ,K} ≥ ST ,

while the value of portfolio B is exactly ST . Hence, the arbitrage price of portfolio A at time t
dominates the price of portfolio B – that is,

Ct + Ke−r(T−t) ≥ St, ∀ t ∈ [0, T ].
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Since the price of the option is non-negative, this proves the first inequality in (37). All remaining
inequalities in (37)–(39) may be verified by means of similar arguments. To check that Ca

t = Ct,
we consider the following portfolios: portfolio A – one American call option and Ke−r(T−t) of cash;
and portfolio B – one share of stock. If the call option is exercised at some date t∗ ∈ [t, T ], then the
value of portfolio A at time t∗ equals

St∗ −K + Ke−r(T−t∗) < St∗ ,

while the value of B is St∗ . On the other hand, the value of portfolio A at the terminal date T
is max{ST ,K}, hence it dominates the value of portfolio B, which is ST . This means that early
exercise of the call option would contradict our general price monotonicity rule. A justification of
relationship (40) is straightforward, as CT −PT = ST −K. To justify the second inequality in (41),
notice that in view of (40) and the obvious inequality P a

t ≥ Pt, we get

P a
t ≥ Pt = Ca

t + Ke−r(T−t) − St, ∀ t ∈ [0, T ].

The proof of the first inequality in (41) goes as follows. Take the two following portfolios: portfolio
A – one American call and K units of cash; and portfolio B – one American put and one share of
stock. If the put option is exercised at time t∗ ∈ [t, T ], then the value of portfolio B at time t∗ is K.
On the other hand, the value of portfolio A at this date equals

Ct + Ker(t∗−t) ≥ K.

Therefore, portfolio A is more valuable at time t than portfolio B; that is

Ca
t + K ≥ P a

t + St

for every t ∈ [0, T ]. 2

Let us denote by C(S0, T,K) (Ca(S0, T,K), respectively) the price of the European (American,
respectively) call option with expiration date T and exercise price K. The following relationships are
easy to derive

Ca(S0, T1,K) ≤ Ca(S0, T2,K)

where T1 ≤ T2, and

C(S0, T, K2) ≤ C(S0, T, K1), Ca(S0, T, K2) ≤ Ca(S0, T, K1)

provided that K1 ≤ K2.

Proposition 4.4 Assume that K1 < K2. The following inequalities are valid

e−rT (K1 −K2) ≤ C(S0, T,K2)− C(S0, T, K1) ≤ 0,

and
K1 −K2 ≤ Ca(S0, T, K2)− Ca(S0, T, K1) ≤ 0.

Proof. Let us consider, for instance, the case of European options. Take the two following portfolios
at time 0: portfolio A – one European call with exercise price K2 and e−rT (K2−K1) units of cash;
and portfolio B – one European call with exercise price K1. The value of portfolio A at time T is

(ST −K2)+ + (K2 −K1) ≥ (ST −K1)+,

and the value of portfolio B at time T equals (S0 −K1)+. Consequently

C(S0, T, K2) + e−rT (K2 −K1) ≥ C(S0, T, K1),

as expected. 2
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Proposition 4.5 The price of a European (or American) call (or put) option is a convex function
of the exercise price K.

Proof. Let us consider the case of a European put option. We write P (S0, T, K) to denote its price
at time 0. Assume that K1 < K2 and put K3 = γK1 + (1 − γ)K2, where γ ∈ (0, 1) is a constant.
We consider the following portfolios: portfolio A – γ European put options with exercise price K1

and 1− γ European put options with exercise price K2; and portfolio B – one European put option
with exercise price K3. At maturity T we have

γ(K1 − ST )+ + (1− γ)(K2 − ST )+ ≥
((

γK1 + (1− γ)K2

)− ST

)+

since the payoff function h(x) = (K − x)+ is convex. 2
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