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� Introduction to Monte Carlo Methods

Numerical methods that are known as Monte Carlo methods can be loosely described as
statistical simulation methods� where statistical simulation is de�ned in quite general terms
to be any method that utilizes sequences of random numbers to perform the simulation	
Monte Carlo methods have been used for centuries� but only in the past several decades has
the technique gained the status of a full�
edged numerical method capable of addressing the
most complex applications	 The name �Monte Carlo� was coined by Metropolis �inspired
by Ulam
s interest in poker� during the Manhattan Project of World War II� because of the
similarity of statistical simulation to games of chance� and because the capital of Monaco was
a center for gambling and similar pursuits	 Monte Carlo is now used routinely in many diverse
�elds� from the simulation of complex physical phenomena such as radiation transport in the
earth
s atmosphere and the simulation of the esoteric subnuclear processes in high energy
physics experiments� to the mundane� such as the simulation of a Bingo game or the outcome
of Monty Hall
s vexing o�er to the contestant in �Let
s Make a Deal	� The analogy of Monte
Carlo methods to games of chance is a good one� but the �game� is a physical system� and
the outcome of the game is not a pot of money or stack of chips �unless simulated� but
rather a solution to some problem	 The �winner� is the scientist� who judges the value of
his results on their intrinsic worth� rather than the extrinsic worth of his holdings	
Statistical simulation methods may be contrasted to conventional numerical discretiza�

tion methods� which typically are applied to ordinary or partial di�erential equations that
describe some underlying physical or mathematical system	 In many applications of Monte
Carlo� the physical process is simulated directly� and there is no need to even write down
the di�erential equations that describe the behavior of the system	 The only requirement
is that the physical �or mathematical� system be described by probability density functions
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Figure �� Monte Carlo Simulation of Physical System

�pdf
s�� which will be discussed in more detail later in this chapter	 For now� we will assume
that the behavior of a system can be described by pdf
s	 Once the pdf
s are known� the
Monte Carlo simulation can proceed by random sampling from the pdf
s	 Many simulations
are then performed �multiple �trials� or �histories�� and the desired result is taken as an
average over the number of observations �which may be a single observation or perhaps mil�
lions of observations�	 In many practical applications� one can predict the statistical error
�the �variance�� in this average result� and hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error	

Figure � illustrates the idea of Monte Carlo� or statistical� simulation as applied to
an arbitrary physical system	 Assuming that the evolution of the physical system can be
described by probability density functions �pdf
s�� then the Monte Carlo simulation can
proceed by sampling from these pdf
s� which necessitates a fast and e�ective way to generate
random numbers uniformly distributed on the interval �����	 The outcomes of these random
samplings� or trials� must be accumulated or tallied in an appropriate manner to produce the
desired result� but the essential characteristic of Monte Carlo is the use of random sampling
techniques �and perhaps other algebra to manipulate the outcomes� to arrive at a solution of
the physical problem	 In contrast� a conventional numerical solution approach would start
with the mathematical model of the physical system� discretizing the di�erential equations
and then solving a set of algebraic equations for the unknown state of the system	

It should be kept in mind though that this general description of Monte Carlo methods
may not directly apply to some applications	 It is natural to think that Monte Carlo methods
are used to simulate random� or stochastic� processes� since these can be described by pdf
s	
However� this coupling is actually too restrictive because many Monte Carlo applications
have no apparent stochastic content� such as the evaluation of a de�nite integral or the
inversion of a system of linear equations	 However� in these cases and others� one can pose
the desired solution in terms of pdf
s� and while this transformation may seem arti�cial� this
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step allows the system to be treated as a stochastic process for the purpose of simulation and
hence Monte Carlo methods can be applied to simulate the system	 Therefore� we take a
broad view of the de�nition of Monte Carlo methods and include in the Monte Carlo rubric
all methods that involve statistical simulation of some underlying system� whether or not
the system represents a real physical process	

To illustrate the diversity of Monte Carlo methods� Figure � lists applications that have
been addressed with statistical simulation techniques	 As can be seen� the range of applica�
tions is enormous� from the simulation of galactic formation to quantum chromodynamics
to the solution of systems of linear equations	

This wide diversity of methods is the reason that �Monte Carlo is not Monte Carlo is
not Monte Carlo	�

��� Major Components of a Monte Carlo Algorithm

Given our de�nition of Monte Carlo� let us now describe brie
y the major components of
a Monte Carlo method	 These components comprise the foundation of most Monte Carlo
applications� and the following sections will explore them in more detail	 An understanding
of these major components will provide a sound foundation for the reader to construct his
or her own Monte Carlo method� although of course the physics and mathematics of the
speci�c application are well beyond the scope of this chapter	 The primary components of a
Monte Carlo simulation method include the following�

� Probability distribution functions �pdf�s� � the physical �or mathematical� system
must be described by a set of pdf
s	

� Random number generator � a source of random numbers uniformly distributed on
the unit interval must be available	
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� Sampling rule � a prescription for sampling from the speci�ed pdf
s� assuming the
availability of random numbers on the unit interval� must be given	

� Scoring �or tallying� � the outcomes must be accumulated into overall tallies or scores
for the quantities of interest	

� Error estimation � an estimate of the statistical error �variance� as a function of the
number of trials and other quantities must be determined	

� Variance reduction techniques � methods for reducing the variance in the estimated
solution to reduce the computational time for Monte Carlo simulation

� Parallelization and vectorization � algorithms to allow Monte Carlo methods to be
implemented e�ciently on advanced computer architectures	

The remainder of this chapter will treat each of these topics in some detail	 Later
chapters will describe speci�c applications of the Monte Carlo method� relying on material
in this chapter for the generic aspects common to most� if not all� such methods	 But before
we actually delve into the subject of Monte Carlo methods� let us look backwards and review
some of their history	

��� History of Monte Carlo

This section will appear in a future release	

� An Introduction to Probability and Statistics

An essential component of a Monte Carlo simulation is the modeling of the physical process
by one or more probability density functions �pdf
s�	 By describing the process as a pdf�
which may have its origins in experimental data or in a theoretical model describing the
physics of the process� one can sample an �outcome� from the pdf� thus simulating the
actual physical process	 For example� the simulation of the transport of � MeV neutrons in
a tank of water will necessitate sampling from a pdf that will yield the distance the neutron
travels in the water before su�ering a collision with a water molecule	 This pdf is the well�
known exponential distribution and is an example of a continuous pdf because the outcomes
�distances to collision� are described by real numbers	 The exponential distribution will be
described in more detail later in this chapter	 On the other hand� the simulation of roulette
will require sampling from a discrete pdf that describes the probability of obtaining one of
the �� ��� outside the U	S	� numbers on a roulette wheel	

��� Sample Spaces� Outcomes� and Events

Let us now be more precise about our terminology and de�ne some additional terms that lead
to the concept of a pdf	 Consistent with standard textbooks �e	g	� �Hamming� or �DeGroot���
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we will refer to the physical or mathematical process as an experiment� and this experiment
has a number �possibly in�nite� of outcomes� to which we will assign probabilities	 The
sample space S of the experiment is the collection of all possible outcomes s	 Thus if the
experiment is carried out� its outcome is assured to be in the sample space S	 We will also
describe one realization of the experiment as a trial� and by de�nition a trial will have an
outcome s in the sample space S	 The experiment may result in the occurrence of a speci�c
event Ek	 An event may be viewed as a consequence of the outcome �or outcomes� of the
experiment	 Let us now illustrate these concepts with a simple example	

Example � An illustration of an experiment and the terminology used in the experiment�

The experiment consists of one roll of a normal die �with faces labeled �� �� �� �� �� and
�� and observing the top face of the die	 The outcomes si are the six faces� and the sample
space S consists of these six outcomes� since every realization of the experiment �i	e	� each
trial� results in one of these faces being the top face	 �We will assume that the die will not
balance on an edge or corner	� Events can then be de�ned in terms of the possible outcomes	
Possible events that may be de�ned in terms of the six unique outcomes are�

� E�� top face is an even number

� E�� top face is larger than �

� E�� top face is equal to � �hence the event is one of the outcomes�

Disjoint events are events that cannot happen at the same time	 In the above example�
events E� and E� are disjoint� because a single roll of the die �as the experiment was de�ned�
cannot lead to both events occurring	 On the other hand� events E� and E� can occur at
the same time� as can events E� and E�	

��� Probability

Since this chapter is not intended to be a complete and rigorous treatment of probability�
we will avoid the formal theory of probability and instead present a functional description	
This should be su�cient preparation to understand the concept of a pdf� which is the goal
of this section	 The reader who is interested in delving deeper into the subject is encouraged
to read the standard textbooks on the subject� a couple of which were named above	
To an event Ek we will assign a probability pk� which is also denoted P �Ek�� or �prob�

ability of event Ek�	 The quantity pk must satisfy the properties given in Figure � to be a
legitimate probability	



�

Figure �� Properties of a Valid Probability pk

� � � pk � �
� If Ek is certain to occur� pk � �	
If Ek is certain not to occur� pk � �	

� If events Ei and Ej are mutually exclusive� then
P �Ei and Ej� � �
P �Ei or Ej� � pi � pj

� If events Ei� i � �� �� � � � � N � are mutually exclusive
and exhaustive �one of the N events Ei is assured to
occur�� then PN

i�� pi � �

����� Joint� Marginal� and Conditional Probabilities

We now consider an experiment that consists of two parts� and each part leads to the occur�
rence of speci�ed events	 Let us de�ne events arising from the �rst part of the experiment
by Fi with probability fi and events from the second part by Gj with probability gj	 The
combination of events Fi and Gj may be called a composite event� denoted by the ordered
pair Eij � �Fi� Gj�	 We wish to generalize the de�nition of probability to apply to the com�
posite event Eij	 The joint probability pij is de�ned to be the probability that the �rst part
of the experiment led to event Fi and the second part of the experiment led to event Gj	
Thus� the joint probability pij is the probability that the composite event Eij occurred �i	e	�
the probability that both events Fi and Gj occur�	
Any joint probability can be factored into the product of a marginal probability and a

conditional probability�

pij � p�i� p�jji� ���

where pij is the joint probability� p�i� is the marginal probability �the probability that event
Fi occurs regardless of event Gj�� and p�jji� is the conditional probability �the probability
that event Gj occurs given that event Fi occurs�	 Note that the marginal probability for
event Fi to occur is simply the probability that the event Fi occurs� or p�i� � fi	 Let us
now assume that there are J mutually�exclusive events Gj � j � �� � � � � J and the following
identity is evident�

p�i� �
JX

k��

pik ���

Using Eq	 ���� we easily manipulate Eq	 ��� to obtain the following expression for the joint
probability

pij � pij

�
BBB�

JP
k��

pik

JP
k��

pik

�
CCCA � p�i�

�
BBB� pij

JP
k��

pik

�
CCCA ���
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Using Eq	 ���� Eq	 ��� leads to the following expression for the conditional probability�

p�jji� � pij
JP

k��
pik

���

It is important to note that the joint probability pij � the marginal probability p�i�� and the
conditional probability p�jji� are all legitimate probabilities� hence they satisfy the properties
given in the box above	 Finally� it is straightforward to generalize these de�nitions to treat
a three�part experiment that has a composite event consisting of three events� or in general
an n�part experiment with n events occurring	
If events Fi and Gj are independent� then the probability of one occurring does not a�ect

the probability of the other occurring� therefore�

pij � figj ���

Using Eq	 ���� Eq	 ��� leads immediately to

p�jji� � gj ���

for independent events Fi and Gj 	 This last equation re
ects the fact that the probability
of event Gj occurring is independent of whether event Fi has occurred� if events Fi and Gj

are independent	

����� Random Variables

We now de�ne the concept of a random variable� a key de�nition in probability and statistics
and for statistical simulation in general	 We de�ne a random variable as a real number xi
that is assigned to an event Ei	 It is random because the event Ei is random� and it is
variable because the assignment of the value may vary over the real axis	 We will use �r	v	�
as an abbreviation for �random variable�	

Example � Associating a random variable with a roll of a die�

Assign the number ��n to each face n of a die	 When face n appears� the r	v	 is ��n	

Random variables are useful because they allow the quanti�cation of random processes�
and they facilitate numerical manipulations� such as the de�nition of mean and standard
deviation� to be introduced below	 For example� if one were drawing balls of di�erent colors
from a bowl� it would be di�cult to envision an �average� color� although if numbers were
assigned to the di�erent colored balls� then an average could be computed	 On the other
hand� in many cases of real interest� there is no reasonable way to assign a real number
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to the outcome of the random process� such as the outcome of the interaction between a
� eV neutron and a uranium���� nucleus� which might lead to �ssion� capture� or scatter	
In this case� de�ning an �average� interaction makes no sense� and assigning a real number
to the random process does not assist us in that regard	 Nevertheless� in the following
discussion� we have tacitly assumed a real number xi has been assigned to the event Ei that
we know occurs with probability pi	 Thus� one can in essence say that the r	v	 xi occurs with
probability pi	

����� Expectation Value� Variance� Functions of r�v��s

Now that we have assigned a number to the outcome of an event� we can de�ne an �average�
value for the r	v	 over the possible events	 This average value is called the expectation value
for the random variable x� and has the following de�nition�

expectation value �or mean� � E�x� � �x�X
i

pixi ���

One can de�ne a unique� real�valued function of a r	v	� which will also be a r	v	 That
is� given a r	v	 x� then the real�valued function g�x� is also a r	v	 and we can de�ne the
expectation value of g�x��

E�g�x�� � �g �
X
i

pi g�xi� ���

The expectation value of a linear combination of r	v	
s is simply the linear combination
of their respective expectation values�

E�ag�x� � bh�x�� � aE�g�x�� � bE�h�x�� ���

The expectation value is simply the ��rst moment� of the r	v	� meaning that one is
�nding the average of the r	v	 itself� rather than its square or cube or square root	 Thus the
mean is the average value of the �rst moment of the r	v	� and one might ask whether or not
averages of the higher moments have any signi�cance	 In fact� the average of the square of
the r	v	 does lead to an important quantity� the variance� and we will now de�ne the higher
moments of a r	v	 x as follows�

E�xn� � xn ����

We also de�ne �central� moments that express the variation of a r	v	 about its mean�
hence �corrected for the mean��

nth central moment � �x� �x�n ����

The �rst central moment is zero	 The second central moment is the variance�

variance � var�x� � ���x� � �x� �x�� �X
i

pi�xi � �x�� ����

It is straightforward to show the following important identity�

�� � x� � x� ����
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We will also �nd useful the square root of the variance� which is the standard deviation�

standard deviation � ��x� � �var�x����� ����

����� Variance of Linear Combination

The mean of a linear combination of r	v	
s is the linear combination of the means� as shown
in Eq	 ���� because the mean is a linear statistic� as is clear from Eq	 ���	 On the other hand�
the variance is clearly not a linear statistic� since the r	v	 is squared	 However� we will �nd it
necessary to consider the variance of a linear combination of r	v	
s� and it is straightforward
to show the following�

���ag � bh� � a����g� � b����h� � �ab�gh� �g�h� ����

Let us consider the average value of the product of two r	v	
s�

E�xy� �
X
i�j

pij xi yj ����

Now if x and y are independent r	v	
s� then

pij � piqj� ����

where qj is the probability for the r	v	 yj to occur	 But if Eq	 ���� is inserted into Eq	 �����
we �nd

E�xy� �
X
i�j

pij xi yj �
X
i�j

pi qj xi yj

�
X
i

pixi
X
j

qjyj � E�x�E�y� ����

Thus� if two r	v	
s are independent� the expectation value of their product is the product
of their expectation values	 Now consider the case of the variance of a linear combination of
r	v	
s given in Eq	 ����� and note that if the r	v	
s g and h are independent� Eq	 ���� when
inserted into Eq	 ���� yields the following expression� valid only when g�x� and h�x� are
independent r�v��s�

���ag�x� � bh�x�� � a����g� � b����h� ����

����� Covariance and Correlation Coe�cient

The cancellation of the last term in Eq	 ���� for independent r	v	
s motivates the concept of
the covariance	

covariance � cov�x� y� � xy � �x�y ����

If x and y are independent� then cov�x� y� � �	 However� it is possible to have cov�x� y� �
� even if x and y are not independent	 It should be noted that the covariance can be negative	
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A related quantity that arises often in statistical analysis is the correlation coe�cient� which
is a convenient measure of the degree to which two r	v	
s are correlated �or anti�correlated�	

correlation coe�cient � ��x� y� � cov�x� y������x����y����� ����

It is easily shown that �� � ��x� y� � �	

��� Continuous Random Variables

So far we have considered only discrete r	v	
s� that is� a speci�c number xi is assigned to
the event Ei� but what if the events cannot be enumerated by integers� such as the angle of
scattering for an electron scattering o� a gold nucleus or the time to failure for a computer
chip� The above de�nitions for discrete r	v	
s can be easily generalized to the continuous
case	
First of all� if there is a continuous range of values� such as an angle between � and

��� then the probability of getting exactly a speci�c angle is zero� because there are an
in�nite number of angles to choose from� and it would be impossible to choose exactly the
correct angle	 For example� the probability of choosing the angle � � ���� radians must be
zero� since there are an in�nite number of alternative angles	 In fact� there are an in�nite
number of angles between �	�� and �	�� radians or between �	��� and �	��� radians� hence
the probability of a given angle must be zero	 However� we can talk about the probability
of a r	v	 taking on a value within a given interval� e	g	� an angle � between �	�� and �	��
radians	 To do this� we de�ne a probability density function� or pdf	

����� Probability Density Function 	pdf


The signi�cance of the pdf f�x� is that f�x� dx is the probability that the r	v	 is in the
interval �x� x� dx�� written as�

prob�x � x� � x� dx� � P �x � x� � x� dx� � f�x� dx ����

This is an operational de�nition of f�x�� Since f�x� dx is unitless �it is a probability�� then
f�x� has units of inverse r	v	 units� e	g	� ��cm or ��s or ��cm�� depending on the units of
x	 Figure � shows a typical pdf f�x� and illustrates the interpretation of the probability of
�nding the r	v	 in �x� x� dx� with the area under the curve f�x� from x to x� dx	
We can also determine the probability of �nding the r	v	 somewhere in the �nite interval

�a� b��

prob�a � x � b� � P �a � x � b� �
Z b

a
f�x�� dx� ����

which� of course� is the area under the curve f�x� from x � a to x � b	
As with the de�nition of discrete probability distributions� there are some restrictions on

the pdf	 Since f�x� is a probability density� it must be positive for all values of the r	v	 x	
Furthermore� the probability of �nding the r	v	 somewhere on the real axis must be unity	
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f(x’)

x’x

dx

f(x)dx = probability that the r.v. x'
is in dx about x

Figure �� Typical Probability Distribution Function �pdf�

As it turns out� these two conditions are the only necessary conditions for f�x� to be a
legitimate pdf� and are summarized below	

f�x� � �� �� � x �� ����

Z
�

��

f�x�� dx� � � ����

Note that these restrictions are not very stringent� and in fact allow one to apply Monte
Carlo methods to solve problems that have no apparent stochasticity or randomness	 By
posing a particular application in terms of functions that obey these relatively mild condi�
tions� one can treat them as pdf
s and perhaps employ the powerful techniques of Monte
Carlo simulation to solve the original application	 We now de�ne an important quantity�
intimately related to the pdf� that is known as the cumulative distribution function� or cdf	

����� Cumulative Distribution Function 	cdf


The cumulative distribution function gives the probability that the r	v	 x� is less than or
equal to x�

CDF � prob�x� � x� � F �x�

�
Z x

��

f�x�� dx� ����

Note that since f�x� � �� and the integral of f�x� is normalized to unity� F �x� obeys the
following conditions�

� F �x� is monotone increasing

� F ���� � �
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Figure �� Representative Cumulative Distribution Function �cdf�

� F ���� � �
Figure � illustrates a representative cdf	 Note the dependence of F �x� as x � ��	

Since F �x� is the inde�nite integral of f�x�� f�x� � F ��x�	 The cdf can also be de�ned for
a discrete pdf� however� this will be deferred until we discuss the subject of sampling from a
discrete distribution	

����� Expectation Value and Variance for Continuous pdf�s

We can de�ne the expectation value and variance for a continuous pdf� consistent with our
earlier de�nitions for a discrete pdf�

E�x� � � � �x �
Z
�

��

f�x��x� dx� ����

var�x� � �� �
Z
�

��

f�x�� �x� � ��� dx� ����

Similarly� if we de�ne a real�valued function g�x� of the r	v	 x� we readily obtain the
following expressions for the mean and variance of g for a continuous pdf�

E�g� � �g �
Z
�

��

f�x�� g�x�� dx� ����

var�g� � ���g� �
Z
�

��

f�x�� �g�x��� �g�� dx� ����

It is important to keep in mind that the quantities �x and �g are true means� properties of
the pdf f�x� and the function g�x�� In many cases of practical interest the true mean is not
known� and the purpose of the Monte Carlo simulation will be to estimate the true mean	
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These estimates will be denoted by a caret or hat� e	g	� �x and �g	 Thus the result of a Monte
Carlo simulation might be �g� and the hope is that this is a good approximation to the true
�but unknown� quantity �g	 This notation will be adhered to throughout this chapter on
Monte Carlo methods	

����� Relationship of Discrete and Continuous pdf�s

Compare these de�nitions for a continuous pdf with the previous de�nitions for the mean
and variance for a discrete pdf� given in Eq	 ��� and Eq	 ����� respectively� and reproduced
below for convenience �where the subscript �d� corresponds to �discrete���

Ed�x� �
NX
i��

pixi ����

vard�x� �
NX
i��

pi�xi � ��� ����

Now take the limit N �� to pass from the discrete to the continuous versions for these
quantities�

lim
N��

Ed�x� � lim
N��

NX
i��

xipi � lim
N��

NX
i��

xi
pi
 xi

 xi

� lim
N��

NX
i��

xi fi xi �
Z
�

��

f�x��x� dx� ����

� E�x�

lim
N��

vard�x� � lim
N��

NX
i��

�xi � ��� pi � lim
N��

NX
i��

�xi � ���
pi
 xi

 xi

� lim
N��

NX
i��

�xi � ��� fi xi �
Z
�

��

f�x�� �x� � ��� dx� ����

� var�x�

��� Examples of Continuous pdf�s

����� Exponential Distribution

f�x� � 	e��x� x � �� 	 
 � ����

This distribution can describe a number of physical phenomena� such as the time t for a
radioactive nucleus to decay� or the time x for a component to fail� or the distance z a
photon travels in the atmosphere before su�ering a collision with a water molecule	 The
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x

f(x)

λ

λe-λx

1/λ

Figure �� Exponential pdf

exponential distribution is characterized by the single parameter 	� and one can easily show
that the mean and variance for the exponential distribution are given by�

� �
�

	
����

�� �
�
�

	

��
����

Figure � illustrates the exponential distribution	 Note that the standard deviation of the
exponential distribution is

� �
�

	
����

Later we will learn that we can associate the standard deviation with a sort of expected
deviation from the mean� meaning that for the exponential distribution� one would expect
most samples x to fall within ��	 of �� even though the actual range of samples x is in�
�nite	 One can see this by computing the probability that a sample from the exponential
distribution falls within ��� of the mean � �

prob
�
� � �

�
� x � ��

�

�

�
�
Z �

��

�

��

	e��x dx � ���� ����

Hence ��! of the samples from the exponential distribution can be expected to fall within
a half of a standard deviation of the mean� although some of the samples will be far from
the mean� since � � x ��	
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Figure �� Gaussian �Normal� Probability Distribution Function

����� Gaussian 	Normal
 Distribution�

The second example is perhaps the most important pdf in probability and statistics� the
Gaussian� or normal� distribution	

f�x� �
�

��������
e�

�x����

��� � �� � x �� ����

This is a two�parameter �� and �� distribution� and it can be shown that � is the mean of
the distribution and �� is the variance	 Figure � illustrates the Gaussian pdf	

Let us calculate the probability that a sample from the Gaussian distribution will fall
within a single standard deviation � of the mean ��

P �� � � � x � � � �� � ����� ����

Similarly� the probability that the sample is within two standard deviations �within �����
of the mean is

P ��� �� � x � � � ��� � ����� ����

Hence ��! of the samples will� on average� fall within one �� and over ��! of the samples
will fall within two � of the mean �	

The Gaussian distribution will be encountered frequently in this course� not only because
it is a fundamental pdf for many physical and mathematical applications� but also because
it plays a central role in the estimation of errors with Monte Carlo simulation	
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����� Cauchy Distribution

f�x� �
a

a� � x�
� �� � x �� ����

This is an interesting pdf� because strictly speaking� its mean does not exist and its variance
is in�nite	 Given our de�nition of mean�

� �
Z
�

��

x
a

a� � x�
dx ����

we �nd that this integral does not exist because the separate integrals for x 
 � and x � �
do not exist	 However� if we allow a �principal value� integration� where the limits are taken
simultaneously� we see that the integral for x � � will cancel the integral for x 
 � and the
mean is zero� consistent with a graphical interpretation of this pdf� as depicted in Figure �	
However� if we try to compute the variance� we �nd�

�� �
Z
�

��

�x� ���
a

a� � x�
dx ����

which is an unbounded integral	 Thus if we sample from the Cauchy distribution and we
attempt to predict the extent to which samples will fall �close� to the mean� we will fail	
Note that the Cauchy distribution is a legitimate pdf� because it satis�es the properties of a
pdf given in Eq	 ���� and Eq	 ����� namely�Z

�

��

f�x� dx �
Z
�

��

a

a� � x�
dx � � ����

f�x� �
a

a� � x�
� �� all x ����

but its variance is in�nite and its mean necessitates a more general de�nition of integration	
These have been examples of single random variable� or univariate� pdf
s	 Let us now

consider bivariate pdf
s� which generalize readily to multivariate pdf
s �the important con�
ceptual step is in going from one to two random variables�	 Bivariate distributions are needed
for a number of important topics in Monte Carlo� including sampling from multidimensional
pdf
s and the analysis of rejection sampling	

����� Bivariate Probability Distributions

We now consider two r	v	
s x� and y�� where �� � x� � � and �� � y� � �	 We ask
what is the probability that the �rst r	v	 x� falls within �x� x�dx� and the second r	v	 y� falls
within �y� y� dy�� which de�nes the bivariate pdf f�x� y��

f�x� y� dx dy � prob��x � x� � x� dx� and �y � y� � y � dy�� ����

Using this operational de�nition of f�x� y�� let us multiply and divide by the quantity
m�x�� where we assume m�x� �� ��

m�x� �
Z
�

��

f�x� y�� dy� ����



An Introduction to Probability and Statistics ��

f(x)

1

x=0

x

Figure �� Cauchy Probability Distribution Function

It is readily shown that m�x� satis�es the properties for a legitimate pdf given in Eq	 ����
and Eq	 ����� and we can interpret m�x� as follows�

m�x� dx � probability that x� is in dx about x� irrespective of y�	 ����

The quantity m�x� is known as the marginal probability distribution function	 Now
de�ne the quantity c�yjx��

c�yjx� � f�x� y�

m�x�
����

As with m�x�� it can be shown that c�yjx� is a legitimate pdf and can be interpreted as
follows�

c�yjx� dy � probability that y� is in dy about y� assuming x� � x	 ����

The quantity c�yjx� is called the conditional pdf	 The constraint that m�x� �� � simply
means that the r	v	
s x� and y� are not mutually exclusive� meaning there is some probability
that both x� and y� will occur together	 Note that if x and y are independent r	v	
s� then
m�x� and c�yjx� reduce to the univariate pdf
s for x and y�

m�x� � f�x� ����

c�yjx� � g�y� ����

and therefore for independent pdf
s we �nd that the bivariate pdf is simply the product of
the two univariate pdf
s�

f�x� y� � f�x�g�y� ����
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����� Bivariate cdf

The cumulative distribution function for a bivariate pdf is de�ned in an analogous way to
the univariate case�

F �x� y� � prob�x� � x and y� � y�

�
Z x

��

dx�
Z y

��

dy� f�x�� y�� ����

and we can express the probability that the random doublet �x�� y�� falls within a �nite region
of the x"y plane in terms of this pdf�

prob�a � x � b and c � y � d� �
Z b

a
dx�

Z d

c
dy� f�x�� y�� ����

����� Sums of Random Variables

Now let us draw N samples x�� x�� x�� � � � � xN from the pdf f�x� and de�ne the following
linear combination of the samples�

G �
NX
n��

	ngn�xn� ����

where the parameters 	n are real constants and the gn�x� are real�valued functions	 Since
the xn are r	v	
s� and G is a linear combination of functions of the r	v	
s� G is also a r	v	 We
now examine the properties of G� in particular its expectation value and variance	 Referring
to our earlier discussion of the mean and variance of a linear combination� expressed as Eq	
��� and Eq	 ����� respectively� we �nd

E�G� � G � E

�
NX
n��

	ngn�xn�

�
�

NX
n��

	nE�gn� �
NX

n��

	ngn ����

var�G� � var

�
NX

n��

	ngn�xn�

�
�

NX
n��

	�n var�gn� ����

Now consider the special case where gn�x� � g�x� and 	n � ��N �

G �
�

N

NX
n��

g�xn� ����

Note that G is simply the average value of theN sampled r	v	
s	 Now consider the expectation
value for G� using Eq	 �����

G �
�

N
E

�
NX
n��

g�xn�

�
�
�

N

NX
n��

�g � �g ����
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In other words� the expectation value for the average �not the average itself#� of N obser�
vations of the r	v	 g�x� is simply the expectation value for g�x�	 This statement is not as
trivial as it may seem� because we may not know E�g� in general� because E�g� is a property
of g�x� and the pdf f�x�	 However� Eq	 ���� assures us that an average of N observations
of g�x� will be a reasonable estimate of E�g�	 Later� we will introduce the concept of an
unbiased estimator� and su�ce to say for now� that Eq	 ���� proves that the simple average
is an unbiased estimator for the mean	 Now let us consider the variance in G� in particular
its dependence on the sample size	
Considering again the case where gn�x� � g�x� and 	n � ��N � and using Eq	 ����� the

variance in the linear combination G is given by�

var�G� �
�
�

N

�� NX
n��

var�g�xn�� �
�
�

N

�� NX
n��

var�g� �
�

N
var�g� ����

Hence the variance in the average value of N samples of g�x� is a factor of N smaller than
the variance in the original r	v	 g�x�	 Note that we have yet to say anything about how to
estimate var�G�� only that its value decreases as ��N 	
This point deserves further elaboration	 The quantities E�g� and var�G� are properties

of the pdf f�x� and the real function g�x�	 As mentioned earlier� they are known as the true
mean and true variance� respectively� because they are known a priori� given the pdf f�x�
and the function g�x�	 Then if we consider a simple average of N samples of g�x�� denoted
G� Eq	 ���� tells us that the true mean for G is equal to the true mean for g�x�	 On the other
hand� Eq	 ���� tells us that the true variance for G is ��N smaller than the true variance
for g�x�� an important consequence for estimating errors	
Later we will show how to estimate var�G�� an important task since in general we don
t

know the true mean and variance� and these terms will have to be estimated	 Let us now
apply this discussion to an important application of Monte Carlo methods� the evaluation
of de�nite integrals	

����
 Monte Carlo Integration 	Our First Application of Monte Carlo


We would like to evaluate the following de�nite integral�

I �
Z b

a
g�x� dx ����

where we assume that g�x� is real�valued on ������	 Figure � depicts a typical integral
to be evaluated	
The idea is to manipulate the de�nite integral into a form that can be solved by Monte

Carlo	 To do this� we de�ne the following function on �a� b��

f�x� �

�
���b � a�� a � x � b
�� otherwise

����
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a b
x

g(x)

area = I

Figure �� Monte Carlo Integration

and insert into Eq	 ���� to obtain the following expression for the integral I�

I �
�

b� a

Z b

a
g�x� f�x� dx ����

Note that f�x� can be viewed as a uniform pdf on the interval �a� b�� as depicted in Figure
�	 Given that f�x� is a pdf� we observe that the integral on the right hand side of Eq	 ����
is simply the expectation value for g�x��

I �
�

b� a

Z b

a
g�x� f�x� dx �

�

b� a
�g ����

We now draw samples xn from the pdf f�x�� and for each xn we will evaluate g�xn� and
form the average G�

G �
�

N

NX
n��

g�xn� ����

But Eq	 ���� states the expectation value for the average of N samples is the expectation
value for g�x�� G � �g� hence

I �
�

b� a
G 	 �

b� a
G �

�

b� a

�
�

N

NX
i��

g�xn�

	
����

Thus we can estimate the true value of the integral I on �a� b� by taking the average of
N observations of the integrand� with the r	v	 x sampled uniformly over the interval �a� b�	
For now� this implies that the interval �a� b� is �nite� since an in�nite interval cannot have a
uniform pdf	 We will see later that in�nite ranges of integration can be accommodated with
more sophisticated techniques	
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Figure ��� Uniform pdf on �a�b�

Recall that Eq	 ���� related the true variance in the average G to the true variance in g�

var�G� �
�

N
var�g� ����

Although we do not know var�G�� since it is a property of the pdf f�x� and the real function
g�x�� it is a constant	 Furthermore� if we associate the error in our estimate of the integral I
with the standard deviation� then we might expect the error in the estimate of I to decrease
by the factor N����	 This will be shown more rigorously later when we consider the Central
Limit Theorem� but now we are arguing on the basis of the functional form of var�G� and a
hazy correspondence of standard deviation with �error�	 What we are missing is a way to
estimate var�G�� as we were able to estimate E�g� with G	

� Sampling from Probability Distribution Functions

As described earlier� a Monte Carlo simulation consists of some physical or mathematical
system that can be described in terms of probability distribution functions� or pdf
s	 These
pdf
s� supplemented perhaps by additional computations� describe the evolution of the overall
system� whether in space� or energy� or time� or even some higher dimensional phase space	
The goal of the Monte Carlo method is to simulate the physical system by random sampling
from these pdf
s and by performing the necessary supplementary computations needed to
describe the system evolution	 In essence� the physics and mathematics are replaced by
random sampling of possible states from pdf
s that describe the system	 We now turn our
attention to how one actually obtains random samples from arbitrary pdf
s	
This chapter will consider sampling from both continuous and discrete pdf
s	 Table �

summarizes the important properties of both types of pdf
s	
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Table �� Important properties of continuous and discrete pdf
s	

Property Continuous� f�x� Discrete� fpig

Positivity f�x� � �� all x pi 
 �� all i

Normalization
R
�

��
f�x�� dx� � �

PN
j�� pj � �

Interpretation f�x� dx pi � prob�i� �
prob�x � x� � x� dx� prob�xj � xi�

Mean �x �
R
�

��
xf�x� dx �x �

PN
j�� xjpj

Variance �� �
R
�

��
�x� �x��f�x� dx �� �

PN
j���xj � �x��pj

We will now discuss how to obtain a random sample x from either a continuous pdf f�x�
or a discrete pdf fpig	

��� Equivalent Continuous pdf�s

It will be convenient to express a discrete pdf as a continuous pdf using �delta functions�	
This will make the ensuing discussion easier to follow and simpli�es many of the manipula�
tions for discrete pdf
s	 Given a discrete pdf fpig� let us associate event i with the discrete
r	v	 xi� and then de�ne an equivalent �continuous� pdf as follows�

f�x� �
NX
i��

pi ��x� xi� ����

Here ��x� xi� is the �delta� function and it satis�es the following properties�Z
�

��

��x� xi� dx � � ����

Z
�

��

f�x� ��x� xi� dx � f�xi� ����

Using these properties� it is straightforward to show that the mean and variance of the
equivalent continuous pdf� as de�ned in Eq	 ����� are identical to the mean and variance of
the original discrete pdf	 Begin with the de�nition of the mean of the equivalent continuous
pdf�

�x �
Z
�

��

x f�x� dx �
Z
�

��

x

�
NX
i��

pi ��x� xi�

�
dx ����
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Now take the summation outside the integral and use Eq	 �����

�x �
NX
i��

Z
�

��

xpi ��x� xi� dx �
NX
i��

xi pi ����

which is the true mean for the discrete pdf	 It is left as an exercise to show that this also
holds for the variance� and in general for any moment of the distribution	
Much of the material that follows holds for both discrete and continuous pdf
s� and this

equivalence will be useful in this discussion	

��� Transformation of pdf�s

In order to have a complete discussion of sampling� we need to explain transformation rules
for pdf
s	 That is� given a pdf f�x�� one de�nes a new variable y � y�x�� and the goal is to
�nd the pdf g�y� that describes the probability that the r	v	 y occurs	 For example� given
the pdf f�E� for the energy of the scattered neutron in an elastic scattering reaction from a
nucleus of mass A� what is the pdf g�v� for the speed v� where E � �

�mv��
First of all� we need to restrict the transformation y � y�x� to be a unique transformation�

because there must be a ��to�� relationship between x and y in order to be able to state that
a given value of x corresponds unambiguously to a value of y	 Given that y�x� is ��to���
then it must either be monotone increasing or monotone decreasing� since any other behavior
would result in a multiple�valued function y�x�	
Let us �rst assume that the transformation y�x� is monotone increasing� which results in

dy�dx 
 � for all x	 Physically� the mathematical transformation must conserve probability�
i	e	� the probability of the r	v	 x� occurring in dx about x must be the same as the probability
of the r	v	 y� occurring in dy about y� since if x occurs� the ��to�� relationship between x
and y necessitates that y appears	 But by de�nition of the pdf
s f�x� and g�y��

f�x� dx � prob�x � x� � x� dx�

g�y� dy � prob�y � y� � y � dy�

The physical transformation implies that these probabilities must be equal	 Figure ��
illustrates this for an example transformation y � y�x�	
Equality of these di�erential probabilities yields

f�x� dx � g�y� dy ����

and one can then solve for g�y��

g�y� � f�x���dy�dx� ����

This holds for the monotone increasing function y�x�	 It is easy to show that for a
monotone decreasing function y�x�� where dy�dx � � for all x� the fact that g�y� must be
positive �by de�nition of probability� leads to the following expression for g�y��

g�y� � f�x����dy�dx� ����
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x
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f(x)dx = probability that x

is in dx

g(y)dy = probability that y
is in dy

Figure ��� Transformation of pdf
s

Combining the two cases leads to the following simple rule for transforming pdf
s�

g�y� � f�x��jdy�dxj ����

For multidimensional pdf
s� the derivative jdy�dxj is replaced by the Jacobian of the
transformation� which will be described later when we discuss sampling from the Gaussian
pdf	

Example � An illustration of neutron elastic scattering�

Consider the elastic scattering of neutrons of energy E� from a nucleus of mass A �mea�
sured in neutron masses� at rest	 De�ne f�E� dE as the probability that the �nal energy of
the scattered neutron is in the energy interval dE about E� given that its initial energy was
E�	 The pdf f�E� is given by�

f�E� �


���
��


�

��� ��E�
� �E� � E � E�

�� otherwise

����

We now ask� what is the probability g�v� dv that the neutron scatters in the speed interval
dv about v� where E � �

�mv�� Using Eq	 ����� one readily �nds the following expression for
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the pdf g�v��

g�v� �


���
��


�v�

��� ��v�
�
p
�v� � v � v�

�� otherwise

����

It is easy to show that g�v� is a properly normalized pdf in accordance with Eq	 ����	

Example � An illustration of the cumulative distributtion function� or cdf�

Perhaps the most important transformation occurs when y�x� is the cumulative distri�
bution function� or cdf�

y�x� � F �x� �
Z
�

��

f�x�� dx� ����

In this case� we have dy�dx � f�x�� and one �nds the important result that the pdf for the
transformation is given by�

g�y� � �� � � y � � ����

In other words� the cdf is always uniformly distributed on ������ independently of the pdf
f�x�# Any value for the cdf is equally likely on the interval 	
���� As will be seen next� this
result has important rami�cations for sampling from an arbitrary pdf	

����� Sampling via Inversion of the cdf

Since the r	v	 x and the cdf F �x� are ��to��� one can sample x by �rst sampling y � F �x�
and then solving for x by inverting F �x�� or x � F���y�	 But Eq	 ���� tells us that the cdf is
uniformly distributed on ������ which is denoted U ��� ��	 Therefore� we simply use a random
number generator �RNG� that generates U ��� �� numbers� to generate a sample 
 from the
cdf F �x�	 Then the value of x is determined by inversion� x � F���
�	 This is depicted
graphically in Figure ��	 The inversion is not always possible� but in many important cases
the inverse is readily obtained	
This simple yet elegant sampling rule was �rst suggested by von Neumann in a letter to

Ulam in ���� �Los Alamos Science� p	 ���� June �����	 It is sometimes called the �Golden
Rule for Sampling�	 Since so much use will be made of this result throughout this chapter�
we summarize below the steps for sampling by inversion of the cdf�

Step �� Sample a random number 
 from U ��� ��

Step �� Equate 
 with the cdf� F �x� � 


Step �� Invert the cdf and solve for x� x � F���
�



��

1

y(x) = F(x)

y

x

ξ

x = F-1(ξ)

Figure ��� Sampling Using the Inverse of the cdf

Example � An illustration of a uniform distribution�

Let the r	v	 x be uniformly distributed between a and b	 In this case� the cdf F �x� is
easily found to be

F �x� � �x� a���b� a� ����

Now sample a random number 
 from U ��� ��� set it equal to F �x�� and solve for x�

x � a� �b� a�
 ����

which yields a sampled point x that is uniformly distributed on the interval �a� b�	

Example � An illustration of an exponential distribution�

Consider the penetration of neutrons in a shield� where the pdf for the distance x to
collision is described by the exponential distribution�

f�x� � 	e��x� x � �� 	 
 � ����

A distance x to collision is then determined by �rst sampling a value for the cdf from
U ��� �� and solving for x	 One does not need to subtract the random number from unity�
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because 
 and �� 
 are both uniformly distributed on ������ and statistically the results will
be identical	

��� More on Sampling

The following topics will be discussed in a future release�

� Example$Gaussian distribution �Box"Muller�
� Discrete probability distribution functions
� Composition techniques
� Sum of � r	v	
s
� �r	v	�n

� Sum of several pdf
s
� Rejection sampling

� Estimation of Mean and Variance

This section will appear in a future release	 It will discuss the following topics�

� True mean� true variance
� Unbiased estimators
� Sample mean and variance
� Canonical tallies � implementation
� Example � Monte Carlo integration

� Error Estimates

This section will appear in a future release	 It will discuss the following topics�

� Law of large numbers
� Chebychev inequality



��

� Central Limit Theorem �CLT�

� Application of CLT to Monte Carlo experiments � scoring
� Standard deviation� relative standard error
� �One sigma� and �two sigma� error estimates

� Variance Reduction

This section will appear in a future release	 It will discuss the following topics�

� Zero variance �or single history� Monte Carlo
� Importance sampling
� Application � Monte Carlo integration �variational derivation�

� Case Study� Monte Carlo Particle Transport

The analysis of particle transport problems motivated the development of the Monte Carlo
method� as we noted in our earlier chapter on the history of the Monte Carlo method	 While
Monte Carlo methods are used in virtually all branches of science and engineering� it is still
the case that the most prevalent application of Monte Carlo is for the solution of complex
problems that are encountered in particle transport applications	 For example� the analysis
of electron transport for electron beam cancer therapy� or the analysis of photon transport in
a cloudy atmosphere� or the attenuation of neutrons in a biological shield	 These problems
are typically characterized by the following features�

� Complex ��D and non�Cartesian geometry �e	g	� nuclear reactor plant� human body�
� Complex material con�gurations �e	g	� semiconductor chips�
� Complicated physical phenomena due to interaction of radiation �neutrons� photons�			�
with medium

� Some known source of radiation incident on �or emitted within� the geometry
� Required output is the amount of radiation� its deposition� or its e�ect in arbitrary
regions

� It is desirable to estimate the uncertainties in the simulation
� The computational e�ort to carry out the simulation should be reasonable
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These rather general characteristics of a typical particle transport Monte Carlo code are
represented in one or more of the following modules that appear in most production Monte
Carlo codes used for radiation transport analysis�

� Source module
� Boundary crossing and geometry module
� Distance to collision module
� Collision analysis module
� Scoring �tallying� module
� Estimate of variance� con�dence intervals
� Variance reduction techniques

Let us now consider each of these modules in more detail	

��� Source Module

A speci�ed source of radiation may either be given as ��� a speci�ed incident distribution in
space� energy� angle� and time or ��� as a known source of radiation that is emitting a speci�ed
amount of radiation as a function of time� space� energy� and angle	 Although it is possible to
show that these are mathematically equivalent �CdHP�� the actual implementation of these
�sources� into a Monte Carlo code will depend on which type of source is being examined	
In order to specify an incident 
ux of particles on a surface� one needs to determine the

following quantities�

� position rs � �xs� ys� zs��
� the energy E�
� the angle % � �%x�%y�%z� that the incident particle is traveling� and

� the time t that the particle is incident on the surface	
For simplicity� let us assume that the incident radiation is monoenergetic at energy E��

and it is monodirectional� traveling down the z�axis	 Let us assume that the surface that is
being irradiated is in the x"y plane� ranging over x � ��� a� and y � ��� b�	
In this case� one typically knows the number of particles incident on the boundary per

unit area of boundary� as a function of time� position on the boundary� energy� and angle	
For example� consider a beam of monoenergetic particles incident normally and uniformly
on the negative �y� surface of a �brick� of edges a� b� and c� corresponding to the three
coordinate axes x� y� and z	



��

In this case� there are I� particles incident per unit area per unit time on the slab� and
they are all travelling perpendicular to the surface of the slab	 To start a particle in a Monte
Carlo simulation� the source module would sample a position on the incoming surface of the
brick	
Nuclear engineers working in reactor physics and radiation shielding areas generally em�

ploy the concept of neutron �
ux� to describe the amount of radiation� while other disciplines
employ a �density� or �intensity� to describe what is in essence a very similar quantity	 How�
ever� since the Monte Carlo simulation is a direct analog of the physical application� how
these terms relate to a real application will be apparent after a few examples	

��� Additional Modules

The following modules will be discussed in a future release�

� Boundary crossing and geometry module
� Distance to collision module
� Collision analysis module
� Scoring �tallying� module
� Estimate of variance� con�dence intervals
� Variance reduction techniques �for particle transport applications�


