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Preface

This book presents an introduction to statistical pattern recogni-
tion. Pattern recognition in general covers a wide range of problems,
and it is hard to find a unified view or approach. It is applied to
engineering problems, such as character readers and waveform analy-
sis. as well as to brain modeling in biology and psychology. However,
statistical decision and estimation, which are the subjects of this book,
are regarded as fundamental to the study of pattern recognition. Statis-
tical decision and estimation are covered in various texts on mathemati-
cal statistics, statistical communication, control theory, and so on. But
obviously each field has a different need and view. So that workers In
pattern recognition need not look from one book to another, this book 1s
organized to provide the basics of these statistical concepts from the
viewpoint of pattern recognition.

The material of this book has been taught in a graduate course at
Purdue University and also in short courses offered in a number of
locations. Therefore, it is the author’s hope that this book will serve as a
text for introductory courses of pattern recognition as well as a refer-
ence book for the workers in the field.
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Chapter I

INTRODUCTION

This book presents and discusses the fundamental mathematical tools for
statistical decision-making processes in pattern recognition. [t 1s felt that the
decision-making processes of a human being are somewhat related to the
recognition of patterns; for example, the next move 1n a chess game 1s based
upon the present pattern on the board, and buying or selling stocks is decided
by a complex pattern of information. The goal of pattern recognition 1s to clar-
Ity these complicated mechanisms of decision-making processes and to
automate these functions using computers. However, because of the complex
nature of the problem, most pattern recognition research has been concentrated
on more realistic problems, such as the recognition of Latin characters and the

classification of waveforms. The purpose of this book is to cover the
mathematical models of these practical problems and to provide the fundamen-
tal mathematical tools necessary for solving them. Although many approaches
have been proposed to formulate more complex decision-making processes,
these are outside the scope of this book.

1.1 Formulation of Pattern Recognition Problems

Many 1important applications of pattern recognition can be characterized
as either waveform classification or classification of geometric figures. For
example. consider the problem of testing a machine for normal or abnormal
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operation by observing the output voltage of a microphone over a period of
time. This problem reduces to discrmination of waveforms from good and
bad machines. On the other hand, recognition of printed English characters
corresponds to classification of geometric figures. In order to perform this type
of classification, we must first measure the observable characteristics of the
sample. The most primitive but assured way to extract all information con-
tained in the sample is to measure the time-sampled values for a waveform,
x(ty),...,x(t,), and the grey levels of pixels for a figure, x(1), ..., x(n), as
shown in Fig. 1-1. These n measurements form a vector X. Even under the
normal machine condition, the observed waveforms are different each time the
observation is made. Therefore, x(¢;) 1s a random variable and will be
expressed, using boldface, as x(¢;). Likewise, X is called a random vector if its
components are random variables and i1s expressed as X. Similar arguments
hold for characters: the observation, x(i), varies from one A to another and
therefore x(i) is a random variable, and X is a random vector.

Thus, each waveform or character i1s expressed by a vector (or a sample)
in an n-dimensional space, and many waveforms or characters form a distribu-
tion of X in the n-dimensional space. Figure 1-2 shows a simple two-
dimensional example of two distributions corresponding to normal and
abnormal machine conditions, where points depict the locations of samples and
solid lines are the contour lines of the probability density functions. If we
know these two distnbutions of X from past experience, we can set up a boun-
dary between these two distributions, g (x;, x;) =0, which divides the two-
dimensional space into two regions. Once the boundary is selected, we can
classify a sample without a class label to a normal or abnormal machine,
depending on g (x;, x5)< 0 or g(x;, x3) >0. We call g(x,, x3) a discriminant
function, and a network which detects the sign of g (x|, x,) 1s called a partern
recognition network, a categorizer, or a classifier. Figure 1-3 shows a block
diagram of a classifier in a general n-dimensional space. Thus, in order to
design a classifier, we must study the characteristics of the distribution of X for
each category and find a proper discriminant function. This process is called
learning or rrbining, and samples used to design a classtfier are called learning
or training samples. The discussion can be easily extended to multi-category
cases.

Thus, pattern recognition, or decision-making in a broader sense, may be
considered as a problem of estimating density functions in a high-dimensional
space and dividing the space into the regions of categories or classes. Because
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Fig. 1-1 Two measurements of patterns: (a) waveform; (b) character.

of this view, mathematical statistics forms the foundation of the subject. Also,
since vectors and matrices are used to represent samples and linear operators,
respectively, a basic knowledge of linear algebra is required to read this book.
Chapter 2 presents a brief review of these two subjects.

The first question we ask is what i1s the theoretically best classifier,
assuming that the distributions of the random vectors are given. This problem
IS statistical hypothesis testing, and the Bayes classifier is the best classifier
which minimizes the probability of classification error. Various hypothesis
tests are discussed in Chapter 3.

The probability of error 1s the key parameter in pattern recognition. The
error due to the Bayes classifier (the Bayes error) gives the smallest error we
can achieve from given distributions. In Chapter 3, we discuss how to calcu-
late the Bayes error. We also consider a simpler problem of finding an upper
bound of the Bayes error.
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Fig. 1-3 Block diagram of a classifier.
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Although the Bayes classifier is optimal, its implementation is often
difficult in practice because of its complexity, particularly when the dimen-
sionality is high. Therefore, we are often led to consider a simpler, parametric
classifier. Parametric classifiers are based on assumed mathematical forms for
either the density functions or the discriminant functions. Linear, quadratic, or
piecewise classifiers are the simplest and most common choices. Various
design procedures for these classifiers are discussed in Chapter 4.

Even when the mathematical forms can be assumed, the values of the
parameters are not given in practice and must be estimated from available sam-
ples. With a finite number of samples, the estimates of the parameters and
subsequently of the classifiers based on these estimates become random vari-
ables. The resulting classification error also becomes a random variable and is
biased with a variance. Therefore, it is important to understand how the
number of samples affects classifier design and its performance. Chapter 5
discusses this subject.

| Introduction 5

When no parametric structure can be assumed for the density functions,
we must use nonparametric techniques such as the Parzen and k-nearest neigh-
bor approaches for estimating density functions. In Chapter 6, we develop the
basic statistical properties of these estimates.

Then, in Chapter 7, the nonparametric density estimates are applied to
classification problems. The main topic in Chapter 7 is the estimation of the
Bayes error without assuming any mathematical form for the density functions.
In general, nonparametric techniques are very sensitive to the number of con-
trol parameters, and tend to give heavily biased results unless the values of
these parameters are carefully chosen. Chapter 7 presents an extensive discus-
sion of how 1o select these parameter values.

In Fig. 1-2, we presented decision-making as dividing a high-
dimensional space. An alternative view 1s to consider decision-making as a
dictionary search. That is, all past experiences (learning samples) are stored in
a memory (a dictionary), and a test sample is classified to the class of the
closest sample in the dictionary. This process is called the nearest neighbor
classification rule: This process 1s widely considered as a decision-making
process close to the one of a human being. Figure 1-4 shows an example of
the decision boundary due to this classifier. Agdin, the classifier divides the
space Into two regions, but In a somewhat more complex and sample-
dependent way than ‘the boundary of Fig. 1-2. This i1s a nonparametric
classifier discussed in Chapter 7.

From the very beginning of the computer age, researchers have been
Interested in how a human being learns, for example, to read English charac-
ters. The study of neurons suggested that a single neuron operates like a linear
classifier, and that a combination of many neurons may produce a complex,
piecewise linear boundary. So, researchers came up with the idea of a learning
machine as shown 1n Fig. 1-5. The structure of the classifier i1s given along
with a number of unknown parameters wg,...,w.. The input vector, for
example an English character, 1s fed, one sample at a time, in sequence. A
teacher stands beside the machine, observing both the input and output. When
a discrepancy is observed between the input and output, the teacher notifies the
machine, and the machine changes the parameters according to a predesigned
algorithm. Chapter 8 discusses how to change these parameters and how the
parameters converge to the desired values. However, changing a large number
of parameters by observing one sample at a time tums out to be a very
Inefficient way of designing a classifier.
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We started our discussion by choosing time-sampled values of
waveforms or pixel values of geometric figures. Usually, the number of meas-
urements n becomes high in order to ensure that the measurements carry all of
the information contained in the original data. This high-dimensionality makes
many pattern recognition problems difficult. On the other hand, classification
by a human being is usually based on a small number of features such as the
peak value. fundamental frequency, etc. Each of these measurements carries
significant information for classification and is selected according to the physi-
cal meaning of the problem. Obviously, as the number of inputs to a classifier
becomes smaller. the design of the classifier becomes simpler. In order to
enjoy this advantage. we have 1o find some way to select or extract important

| Introduction 7

features from the observed samples. This problem 1s called feature selection or
extraction and is another important subject of pattern recognition. However, 1t
should be noted that, as long as features are computed from the measurements,
the set of features cannot carry more classification information than the meas-
urements. As a result, the Bayes error in the feature space i1s always larger
than that in the measurement space.

Feature selection can be considered as a mapping from the n-dimensional
space to a lower-dimensional feature space. The mapping should be carmed
out without severely reducing the class separability. Although most teatures
that a human being selects are nonlinear functions of the measurements, finding
the optimum nonlinear mapping functions i1s beyond our capability. So, the
discussion in this book 1s limited to linear mappings.

In Chapter 9, feature extraction for signal representation 1s discussed in
which the mapping 1s limited to orthonormal transformations and the mean-
square error is minimized. On the other hand, in feature extraction for classifi-
cation, mapping 1s not limited to any specific form and the class separability is
used as the criterion to be optimized. Feature extraction for classification is
discussed 1in Chapter 10.

It 1s sometimes important to decompose a given distribution into several
clusters. This operation 1s called clustering or unsupervised classification (or
learning). The subject is discussed in Chapter 11.

1.2 Process of Classifier Design

Figure 1-6 shows a flow chart of how a classifier is designed. After data
1s gathered. samples are normalized and registered. Normalization and regis-
tration are very important processes for a successful classifier design. How-
ever, different data requires different normalization and registration, and it is
difficult to discuss these subjects in a generalized way. Therefore, these sub-
jects are not included in this book.

After normalization and registration, the class separability of the data is
measured. This is done by estimating the Bayes error in the measurement
space. Since 1t is not appropriate at this stage to assume a mathematical form
for the data structure, the estimation procedure must be nonparametric. If the
Bayes error is larger than the final classifier error we wish to achieve (denoted
by g,). the data does not carry enough classification information to meet the
specification. Selecting features and designing a classifier in the later stages



8 Introduction to Statistical Pattern Recognition

DATA GATHERING

SEARCH FOR
NORMALIZATION NEW MEASUREMENTS
REGISTRATION
r E > 80
ERROR ESTIMATION
(NONPARAMETRIC) >
NONPARAMETRIC < ¢gg ERROR ESTIMATION  ~a—
PROCESS (NONPARAMETRIC)

'

— —(FEATURE EXTRACTION——
CLUSTERING
STATISTICAL TESTS
MODELING

LINEAR CLASSIFIER

" JQUADRATIC CLASSIFIER
PIECEWISE CLASSIFIER
NONPARAMETRIC CLASSIFIER

]

CLASSIFIER
DESIGN

ERROR ESTIMATION
(PARAMETRIC)

PARAMETERIZATION
PROCESS

1

FIELD TESTS

Fig. 1-6 A flow chart of the process of classifier design.

merely increase the classification error. Therefore, we must go back to data
gathering and seek better measurements.

Only when the estimate of the Bayes error 1s less than g,, may we
proceed to the next stage of data structure analysis in which we study the
characternistics of the data. All kinds of data analysis techniques are used here
which include feature extraction, clustering, statistical tests, modeling, and so
on. Note that, each time a feature set is chosen, the Bayes error in the feature
space 18 estimated and compared with the one In the measurement space. The
ditference between them indicates how much classihication information is lost
In the teature selection process.

| Introduction 9

Once the structure of the data is thoroughly understood. the data dictates
which classifier must be adopted. Our choice 1s normally either a linear. qua-
dratic. or piecewise classifier, and rarely a nonparametric classifier. Non-
parametric techniques are necessary in off-hine analyses to carry out many
important operations such as the estimation of the Bayes error and data struc-
ture analysis. However, they are not so popular for any on-line operation.

because ot their complexity.

After a classifier 1s designed. the classihier must be evaluated by the pro-
cedures discussed in Chapter 5. The resulting error i1s compared with the
Bayes error in the feature space. The difference between these two errors indi-
cates how much the error 1s increased by adopting the classifier. If the differ-
ence 1s unacceptably high, we must reevaluate the design of the classifier.

At last, the classifier is tested n the feld. It the classifier does not
perform as was expected, the data base used for designing the classifier i1s dif-
ferent from the test data in the field. Therefore, we must expand the data base

and design a new classifier.

Notation

n Dimensionality

L Number of classes

N Number of total samples
N, Number of class i samples
W, Class

P, A priori probability of ,
X=[vyvy. .. _\',,]T Vector
X=[x;x>...%,] Random vector

PiX)y=p,(xv).xa..0,) Conditional density tunction ot o,

P(X)= Ei‘:! P.p(X) Mixture density tunction

g (X)y=P,p,(X)p(X) A posteriort probability of o,

opven X

M, =E{X] w,} Expected vector of o,
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M=E{X}=Y" PM, Expected vector of the mixture

density

T.=E{(X-MHYX-M)" o} Covariance matrix of ®;

Z=E{(X-M)X-M)"]

= Zle (P,Z,+P,(M;-M)M,;-M)") Covariance matrix of the
mixture density
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Chapter 2

RANDOM VECTORS

AND THEIR PROPERTIES

In succeeding chapters, we often make use of the properties of random
vectors. We also freely employ standard results from linear algebra. This
chapter 1s a review of the basic properties of a random vector [1,2] and the
related techniques of linear algebra [3-5]. The reader who is familiar with
these topics may omit this chapter, except for a quick reading to become fami-
liar with the notation.

2.1 Random Vectors and their Distributions

Distribution and Density Functions

As we discussed 1n Chapter |, the input to a pattern recognition network
1S a random vector with n variables as

X=[x% ...x,]", (2.1)

where T denotes the transpose of the vector.

Distribution function: A random vector may be characterized by a pro-
bability distribution function, which is defined by

Px,,.. .x,)=Pr{xy<x,,...,%x,<x,}, (2.2)
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where Pr{A} is the probability of an event A. For convenience. we often write (X)) = P,p (X) | (2.8)
(2.2) as pX)

PX)=PriX<X}. (2.3) This relation between ¢,(X) and p;(X) provides a basic tool in hypothesis test-

Density function: Another expression for characterizing a random vector
is the density function, which is defined as

PI'{_\'I < X _'g.\'| + Ai\'|, N < x” S_\'” + A'\'H}

ing which will be discussed in Chapter 3.

Parameters of Distributions

= i A random vector X is fully characterized by its distribution or density
p(X) Im Av Ar
A=l ST function. Often, however, these functions cannot be easily determined or they
Av 50 are mathematically too complex to be of practical use. Therefore, it 1S some-
times preferable o adopt a less complete. but more computable, characteriza-
= 9"P(X)0x,...0x, . (2.4)

Inversely. the distribution function can be expressed in terms of the density
function as follows:

X A \,
pxy=] pyay =] i vy dv o (25)

—000

where jx | .} dY is a shorthand notation for an n-dimensional integral, as
shown. The density function p(X) is not a probability but must be multiplied
by a certain region Ax, ... Ax, (or AX ) 10 obtain a probability.

In pattern recognition. we deal with random vectors drawn from different’
classes (or categories), each of which is characterized by its own density func-
tion. This density function is called the class i density or conditional density of

class 1, and is expressed as
p(X1 ) or p(X) (i=1,.... L), (2.6)

where @, indicates class i and L is the number of classes. The unconditional
density function of X. which is sometimes called the mixture density function,

IS given by

L
p(X)=Y.PpiX), (2.7)
(=1
where P, is a priori probability of class 1.

A posteriori probability: The « posteriori probability ot @, given X,
P(w, | X) or ¢,(X). can be computed by using the Bayes theorem, as follows:

tion.

Expected vector: One of the most important parameters is the expected

vector or mean of a random vector X. The expected vector of a random vector
X 1s defined by

M=E(X) = xpx)ax . (2.9)

where the Integration is taken over the entiret X-space 'unless otherwise
specthied.

The ith component of M, m,, can be calculated by

&0

m, = j_\',p(X) dX =J xip )y dy, . (2.10)

—Cx

where p (v;) is the marginal density of the ith component of X, given by

Py :I m, . .J.mp(X) dvy . oody oy dy, .. dy, (2.11)

—oD —c0
n - |

Thus. each component of M is actually calculated as the expected value of an
individual variable with the marginal one-dimensional density.

The conditional expected vector of a random vector X for , is the
integral

M = E{XI o) =] Xp(X)dx . (2.12)

where p,(X) 15 used instead of p (X)) in (2.9).

Covariance matrix: Another important set of parameters is that which

mdicates the dispersion of the distribution.  The covariance matriv ot X is
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defined by
Xy —m,
Y = E{(X-MYX-M)"} =E* : X, —m,...x, —m,]
X, —m,
(xl_ml)(x]_ml) (xl_ml)(xn_mn)
= F < 4
(X,, _ mn)(xl o ml) roe (xn _ mn)(xn _ mn)
E'(xl_ml)(xl_ml)} El(x.—m,)(x,,-—m,,)}
El(x” _mn)(xl _ml)} - E{(X,, _mn)(xn _mn)}
Cyp -0 Oy .
= (2.13)

(ul v Cyy

The components ¢;; of this matrix are
('H=E{(X,' “f”i)(x}' —??T}')l (i,j= 1, .. ..ﬂ) . . (2]4)

Thus, the diagonal components of the covariance matrix are the variances of
individual random variables, and the off-diagonal components are the covari-
ances of two random variables, x; and x;. Also. it should be noted that all
covariance matrices are symmetric. This property allows us to employ results
from the theory of symmetric matrices as an important analytical tool.

Equation (2.13) is often converted into the following fon\*n:

2 Random Vectors and their Properties 15

L=E(XX"} -E(XIM" -ME(X") + MM =S -MM" | (2.15)

where

E{x)x,} ... E{xx,]
S=E{XX"} = s z . (2.16)
Eix,x;} ... E{x,x,}

Derivation of (2.15) 1s straightforward since M = E{X}. The matrix § of
(2.16) is called the autocorrelation matrix of X. Equation (2.15) gives the
relation between the covartance and autocorrelation matrices, and shows that
both essentially contain the same amount of information.

Sometimes it 1s convenient 10 express c; i by
A :
¢; =0; and ¢; =p;0;0;, (2.17)

r . . . .
where 6; is the variance of x;, Var{x;}, or o; is the standard deviation of x,,
SD{x;}, and p;; is the correlation coefficient between x; and x;. Then

2=I'RT (2.18)
where |
_cs, O ... 0 )
0 o))
I'=|" ' ' (2.19)
0 O,
and
o
L pn . P
Py |
R =1 ' ' (lp,;| <1). (2.20)
TR I

Thus, Z can be expressed as the combination of two types of matrices: one is
the diagonal matrix of standard deviations and the other i1s the matrix of the
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correlation coefficients. We will call R a correlation matrix. Since standard
deviations depend on the scales of the coordinate system, the correlation matrix
retains the essential information of the relation between random variables.

Normal Distributions

An explicit expression of p (X) for a normal distribution 1s

1
(27.[)1:!2 M 1/2

Ny(M, I) = exp{—% d*(X)} , (2.21)

where Ny(M, Z) is a shorthand notation for a normal distribution with the
expected vector M and covanance matrix 2, and

AAX)=X -MTT ' X -M)=u{Z "X - M}X - M)}

=Y Y hijilx = m)(x; —m)), (2.22)
j=1 j=

where h;; 1s the i, j component of ¥~!. The term trA is the trace of a matrix A
and is equal to the summation of the diagonal components of A. As shown 1n
(2.21), a normal distribution is a simple exponential function of a distance
function (2.22) that is a positive definite quadratic function of the x’s. The
coefficient (2x) /21 X | -1z {5 selected to satisfy the probability condition :

[pxyax =1. (2.23)

Normal distributions are widely used because of their many important
properties. Some of these are listed below.

g

(1) Parameters that specify the distribution: The expected vector M and
covariance matrix X are sufficient to characterize a normal distribution
uniquely. All moments of a normal distribution can be calculated as functions
of these parameters.

(2) Uncorrelated-independent: 1If the x,’'s are mutually uncorrelated, then
they are also independent..

(3) Normal marginal densities and normal conditional densities: The
marginal densities and the conditional densities of a normal distribution are all
normal.

(4) Normal characteristic functions: The characteristic function of a nor-
mal distribution, Ny(M, X), has a normal form as
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w(Q) = E lexp[jQ'X]} = exp{—-:lz—QTZQ + jQIMY) (2.24)

where Q= [®, ... ®,]" and w; is the ith frequency component.

(5) Linear transformations. Under any nonsingular linear transformation,
the distance function of (2.22) keeps its quadratic form and also does not lose
its positive definiteness. Therefore, after a nonsingular linear transformation, a
normal distnbution becomes another normal distribution with different parame-

ters.

Also, it is always possible to find a nonsingular linear transtormation
which makes the new covanance matrix diagonal. Since a diagonal covariance
matrix means uncorrelated variables (independent variables for a normal distri-
bution), we can always find for a normal distribution a set of axes such that
random variables are independent in the new coordinate system. These sub-
jects will be discussed in detail in a later section.

(6) Physical justification: The assumption of normality is a reasonable
approximation for many real data sets. This is, in particular, true for processes
where random variables are sums of many variables and the central limit
theorem can be applied. However, normality should not be assumed without
good justification. More often than not this leads to meaningless conclusions.

2.2 Estimation of Parameters

Sample Estimates

Although the expected vector and autocorrelation matrix are important
parameters for charactenzing a distribution, they are unknown in practice and
should be estimated from a set of available samples. This is normally done by
using the sample estimation technique [6,7]. In this section, we will discuss
the technique in a generalized form first, and later treat the estimations of the
expected vector and autocorrelation matrix as the special cases.

Sample estimates: Let y be a function of x,, ..., X, as

y=/. ..., x) (2.25)

. _ ;
with the expected value m, and variance G;:
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my =E{y} and ©O; = Var{y} . (2.26)

Note that all componems of M and § of X are special cases of m,. More
specifically, when y = x| ... x,, with positive integer i;’s, the correspondmg
m, is called the (i1 + ... +1i,)th order moment. The components of M are the
first order moments, and the components of § are the second order moments.

In practice, the density function of y is unknown, or too complex for
computing these expectations. Therefore, 1t 1s common practice to replace the
expectation of (2.26) by the average over available samples as

= _Zyﬂ ’ (227)

where y, is computed by (2.25) from the kth sample X,. This estimate is
called the sample estimate. Since all N samples X;,..., Xy are randomly
drawn from a distribution, it is reasonable 10 assume that the X, s are mutually
independent and identically distributed (iid). Therefore, y,, ..., yy are also
1d.

Moments of the estimates: Since the estimate m, is the summation of N
random variables, 1t 1s also a random variable and characterized by an expected

value and vanance. The expected value of m, is

N
Elyil

A l

L=1
] N
— (2.28)

vE™
That is, the expected value of the estimate 1s the same as the expected value of
y. An estimate that satisfies this condition is called an unbiased estimate.

i

Similarly, the variance of the estimate can be calculated as

-~ i b N A;
Var{m, } = E{(m, —m,)"} =

mt)(y o ’n_\'),
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- Lo (2.29)
- N y - .

Since  Yy...-»Y¥v are mutually independent, E{(y, — m )y, —m,)}

= E{y, —my}E{y, —m,} =0 for k#/. The vanance of the estimate is seen to

be 1/N times the variance of y. Thus, Varll;l}.} can be reduced to zero by let-

ting N go to eo. An estimate that satisfies this condition is called a consistent
I"h"_-'l-....__,_--—-

estimate. All sample estimates are unbiased and consistent regardless of the

functional form of f.

The above discussion can be extended to the covariance between two dif-
ferent estimates. Let us introduce another random variable z = g(x,, ..., Xx,).
Subsequently, m. and l;l_. are obtained by (2.26) and (2.27) respectively. The
covariance of 1;1_,, and 1;1_. IS

Covlr;l_,,,l;l:l = E{(ﬁl. - m.)(l;l- - m-)}

il

ZZﬁi}wmm—mn

Al—l

N2 ZE{(YA m Nz — m.)}}

— % Cov{y,z} . (2.30)

Again, E{(y; —mz, —m.)} = E{y, —m,}E{z, —m-} =0 for k #7, because
Y. and z are independent due to the independence between X, and X..
In most applications, our attention 1s focused on the first and second

order moments, the sample mean and sample autocorrelation matrix, respec-
tively. These are defined by

n N
M= X, (2.31)
N
and
~ 1 N
S=—=YX, X . (2.32)
N 2

Note that all componems of (2.31) and (2.32) are special cases of (2.25).

Therefore, M and S are unbiased and consistent estimates of M and S respec-
lively.
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Example 1: For 1;1,, the ith component of l\n’l the corresponding y is x;.
If the moments of x;, are given as E|x;} =m; Var{x;}=0;, and
Cov{x;,x;} = p,;0;0;, then the moments of l;l,- are computed by (2.28), (2.29),
and  (2.30), resulting in E{l;l,-} =m, Var{r;l,- } =0 2/N, and
Covll;l,-,l;lj} = p;j0;0;/N. They may be rewritten in vector and matrix forms
as

E(M)=M . (2.33)

Cov(M) = E{(M = M)YM - M)T} = 7\‘}-): (2.34)

b

where Cov{M) 1s the covariance matrix of M.

Example 2: For g,-j, the i/, j component of é the corresponding y is X;X;.
Theretore,

E{s;}=s,;, (2.35)

Var{s,j} = %Var[x,xj} = %[E{x,x ) — EZ {x;X;}], (2.36)

Cov{s;:81.} = 7 Covixx, XX |

%[Elx,x XX ) - E{xixGIEIxx; (2.37)

Central Moments

The situation is somewhat different when we discuss central moments
such as variances and covariance matrices. If we could define y for the i, j
component of X as

= (X; — m;)(x; —m;) (2.38)
with the given expected values m; and m;, then
E[m_\. } = E{yl = pUG,'GJ; : (2.39)

The sample estimate is unbiased. In practice, however, m;, and m; are
unknown, and they should be estimated from available samples. When the

sample means are used, (2.38) must be changed to
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y = (x; — m,)(x; — m;). (2.40)

Then
E{m,) = E|y) # p;;0,0; . (2.41)

That is. the expectation of the sample estimate is still the same as the expected
value of y given by (2.40). However, the expectation of (2.40) is not equal to
that of (2.38) which we want to estimate.

Sample covariance matrix: In order to study the expectation of (2.40)
in a matrix form, let us define the sample estimate of a covariance matrix as

N A .-.
¥ = #E(Xﬁ. ~ MY(X, - M) . (2.42)

Then

N - ~
#Z (X, = M) — (M = M)} ((Xx - M) = (M = M)}

{l

: A ,.. |
%); —MYX, = M) — (M - MM - M) (2.43)

Thus, taking the expectation of X,

E{L) =X - E{(M—M)M - M)}

l N -1
=) -—2X= 2. 2.44
) iy Y (2.44)

That is, (2.44) shows that X is a biased estimate ot . This bias can be elim-
tnated by using a modified estimate for the covariance matrix as
;| N

%, = T (X, - M)(X;, - M)’ . (2.45)
N -1

Both (2.42) and (2:45) are termed a sample covariance matrix. In this book.
we use (2.45) as the estimate of a covariance matrix unless otherwise stated,
because of its unbiasedness. When N is large. both are practically the same.
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Variances and covariances of c;;: The variances and covariances of ¢;;
(the i, j component of X) are hard to compute exactly. However, approxima-

tions may be obtained easily by using X, = (1/N) ZN (X, — M)X,; — M)T |

place of X of (2.42). The /, j component of X, as an approximation of c,J, 18
then given by

[t

n ] N
Cij TV_Z ik mr)(xji —m; ) (246)

where X, 1S the /ith component of the kth sample X,. The right hand side of
(2.46) 1s the sample estimate of E{(x; — m;}(x; — m;)}. Therefore, the argu-

ments used to derive (2.28), (2.29), and (2.30) can be applied without
modification, resulting in

Eiéu} ECU . (247)
Var[:t,-j} = #Var[(x,- -m)Xx; —m;)}, (2.48)
and
Ao 1
Covic;;.c;. } EWCOV{(X; —m;)(X; —m;), (X —m ) (X:—m.)) . (2.49)

Note that the approximations are due to the use of m; on the left side and m,
on the right side. Both sides are practically the same for a large M.

Normal case with approximation: Let us assume that samples are
drawn from a normal distribution, Ny (0.A), where A is a diagonal matrix with
components Ay, ..., A,. Since the covariance matrix is diagonal, x; and x; for
1#j are mutuvally independent. Therefore, (2.48) and (2.49) are further
simplified to

A _ ] l,}\.j
Var!C,‘j} = ﬁVarlx;}Var{x}-] = N . (250)

Varl::,-,-} = %Var{x%} = i—:}—[E[x}*} - E*{x}}]

2A°

] 5 )
—_— 3 T e T =
N[ Ar — A7) (2.51)
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and

_— l
COV[CU‘ Cio } = _N_[Elxjxjxkx- } - Elxixj}E{xkxf ']

=0 except {i=k and j=} . (2.52)
The reader may confirm (2.52) for all possible combinations of /, j, &, and?. When
| =K andjﬁt., Cov { EU' EK l becomes Var{ CU' }. which is given In (250)

Also, the covariance between m, and ¢;, may be computed in approximation

as follows:

A A |

Cov{m,,¢;. | ﬁ Cov{x;, x;x }

1

-#[E{x,-xkx | — E{x;}E{xx }]
—0 (2.53)

because E | x;Xx;x. } =0and E | x; } =0 for a zero-mean normal distribution.

Normal case without approximation: When samples are drawn from a

normal distribution, the variances and covariances for E,-,- of (2.45) are known
without approximation. In order to see the effects of the approximation on (2.50)-
(2.52), let us study the exact solutions here. Again, tor simplicity, let us assume a
zero expected vector and a diagonal covanance matrix A.

It 1s known that the sample variance ¢; = 1/(NV -1 )Z‘:;I (X, —m;)’ for a nor-
mal x; has a gamma distribution as [2]

oP*!
: S— Be™™ u(z) (2.54)
P ) = T |
where
N -1 N—l
1 = = — 2.55
B+ ; and @, n (2.55)

and I'(-) 1s the gamma function and u (-) is a step function. The expected value and
variance of (2.54) are also known as




24 Introduction to Statistical Pattern Recognition
E[En] = _‘B+] =A;, (2.56)
;
. 27
Varlc,;,-} = '&-,L ~ . (2.57)
o N —1

My

On the other hand, the moments of ::,-J- = l/(N—l)Z‘:_I (Xm—l;l, )(x , —m;) for
i#J can be computed as follows:

A ] N N A
Elc,;j} — TV_:TZEIXEA - m‘;}E{Xﬁ‘- — mj} =O ; (258)
k=)
- 1 N N " A R -
Var{c;;} = > 2 2E G —m)(x, —m)}E{(x; —m;)(x;; —m,)}
(N=1)" ;2 =
] N N -1 9 A’fkf"
= —— YA = — 2.59
o 2y N = (2.59)

The expectations can be broken into the product of two expectations because x;
and x; are mutually independent. E{(x;—m;)(x;—m;)} =A; 6, (N—1)/N, because
X, and X; are independent. Similarly, the covariances are

Cov{;:;j.;‘,k,l =0 except{i=k and j=}, (2.60)

because some of the (x..—l;‘l.) terms are independent from the others and
EF{x.—m.}=0.

Note that (2.59) and (2.60) are the same as (2.50) and (2.52) respectively.
Equation (2.51) may be obtained from (2.57) by using the approximation of
N —1 = N. This confirms that the approximations are good for a large V.

2.3 Linear Transformation

Linear Transformation

When an n-dimensional vector X is transformed linearly to another »n-
dimensional vector Y, Y is expressed as a function of X as
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Y =-ATX, (2.61)

where A is an n x 7 matrix. Then, the expected vector and covariance matrix of Y

arc
My=E{Y)=ATE{X) =AMy, (2.62)
Ly = E{(Y — My)(Y - My)"}
= ATE{(X - M)(X - Mx)' A
=ATI A, | (2.63)

where the following rule of matrices (matrices need not be square) is used

(AB)' =B'A" . - (2.64)
A similar rule, which holds for the inversion of matrices, 1S
ABY ' =B7"A"". (2.65)

This time. the existence of (AB)™',A™", and B~ is required.

Example 3: The distance tunction of (2.22) for Y can be calculated as

di(Y) = (Y - My)' Z3' (Y — My)
= (X - M)TAATTZHATYTAT(X - My)
= (X - M) T3 (X — My)
=di(X) . (2.66)

That is, the distance of (2.22) is invariant under any nonsingular (1A | #0) linear

transformation.

Example 4: If X is normal with My and Zy, Y is also normal with My and
Zy. Since the quadratic form in the exponential function is invariant, the density
function of Y is
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] |
Y) = ——diY)) . 2.67
P A 1QRr)y" 2 1E) 1 expi=dy(¥)) (£:67)

where |A | is the Jacobian of this linear transformation. Recalling (2.63) and a
determinant rule

Yy =ATE A S 1T, = 1ATHEL 1A = 12411417, (2.68)

p(Y)becomes

|
(27.[)!11'2 | EY | 1/2

p(Y) = expl-—d}(V)) (2.69)

Thus, Y 1s a normal distribution with the expected vector M, and covariance
matrix Zy.

Orthonormal Transformation

Let us shift our coordinate system to bring the expected vector M to the ori-
gin. We use Z for the new coordinate system.

Z=X-M. (2.70)
Then the quadratic form of (2.22) becomes
d2(ZY=2"x77 (2.71)

Let us find a vector Z which maximizes d5(Z) subject to the condition Z'7Z=1
(constant). This is obtained by

%IZTZ"Z—M(ZTZ— D) =222 -2uz =0, (2.72)

where W is a Lagrange multiplier. The term d/9Z consists of n partial derivatives
[0/0z, 0/0z5 ... d/0z,])". Theresultis

>'Z=uZ or £Z=2Z (A=1/), (2.73)

Z'z=1. (2.74)

In order that a nonnull Z may exist. A must be chosen to satisfy the determinant
equation

12 - Al =0. (2.75)

This 1s called the characteristic equation of the matrix Z. -Any value of A that
satisfies this equation is called an efgenvalue, and the Z corresponding to a given A

9 Random Vectors and their Properties 7

i< called an eigenvector. When I is a symmetric n x n matrix, we have n real eigen-
values A.. - A, and n real eigenvectors ¢,,...,¢,. The eigenvectors
corresponding to two different eigenvalues are orthogonal. This can be proved as

follows: ForA;, §; and A, ¢;(A; #A)),
Z¢j = A..,'¢,' and Z¢)} = A’jq)} _ (2.76)

Multiplying the first equation by ¢)}r, the second by ¢ , and subtracting the second

from the first gives
(A =207, = 0TZ¢; —~ 6720, =0, (2.77)
since X is a symmetric matrix. Since A, # A,
¢;¢; =0 (2.78)
Thus, (2.73).(2.74), and (2.78) cén be rewritien as

T = DA , (2.79)
d'Dd =1, (2.80)

where ® is an n x 7 malrix, consisting of n eigenvectors as

®=1[{6, ... ¢,] (2.81)

and A is adiagonal matrix of eigenvalues as
A 0
A= _ : (2.82)
0 A,

and 1 1s the identity matrix. The matrices ® and A will be called the eigenvector
matrix and the eigenvalue matrix, respectively.

Let us use @ as the transformation matrix A of (2.61) as
Y=0'X. (2.83)
Then, from (2.63),
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Y, =PIT, d=A, (2.84)

where the following relationships are used:

((DT)T = O , (285)
&' =d"  [from (2.80)] (2.86)

Equation (2.84) leads to the following important conclusions:

(1) The transtormation of (2.83) may be broken down to n separate equa-
tions y, =6/ X (i=1, ...,n). Since 0! X is ||¢,- 11X lcos® = || X llcos® where 6 is the
angle between the two vectors ¢; and X, y, 1s the projected value of X on ¢;. Thus,
Y represents X 1n the new coordinate system spanned by ¢, ..., ¢,, and (2.83)
may be interpreted as a coordinate transformation.

(2) We can find a linear transformation to diagonalize a covariance matrix in
the new coordinate system. This means that we can obtain uncorrelated random
variables in general and independent random variables for normal distributions.

(3) The transformation matrix s the eigenvector matrix of X. Since the
eigenvectors are the ones that maximize d4(Z), we are actually selecting the prin-
cipal components of the distribution as the new coordinate axes. A two-
dimensional example is given in Fig. 2-1.

(4) The eigenvalues are the variances of the transformed variables, y; ’s.

(3) This transformation is called an orthonormal transformation, because
(2.80) 1s satisfied. In orthonormal transformations, Euclidean distances are
preserved since
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