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ABSTRACT

We present a methodology for modelling real world high frequency financial data.
The methodology copes with the erratic arrival of data and is robust to additive
outliersin the data set. Arbitrage pricing relationships are formulated into a linear
state space representation. Arbitrage opportunities violate these pricing
relationships and are analogous to multivariate additive outliers. Robust
identification/filtering of arbitrage opportunities in the data is accomplished by
Kaman filtering. The state space model used to describe the pricing relationships
is general enough to handle both linear and non-linear models. The recursive
Kaman equations are adapted to filter tick data, cope with the erratic arrival of
observations and produce estimates of all the arbitrage prices on every time step.
We demonstrate the methodology with a robust neural network filter applied to
foreign exchange triangular arbitrage. Tick data from three marketsis used: $/DM,
£/$, £/DM 1993-1995. The filter produces estimates of the arbitrage price for all
exchange rates on every second, increasing both the speed and efficiency of
arbitrage identification.

KEYWORDS: Arbitrage, Foreign Exchange, Multivariate Kalman Filter, Neural
Network, Outliers, Robust, Tick Data.

1. Introduction

Arbitrage is a fundamenta mechanism for achieving efficiency in the financial
markets (Ross 1976). An arbitrage opportunity occurs when a price discrepancy
exists between two or more highly related assets. The opportunity can be exploited
by buying the under priced asset and selling the over priced asset, producing a profit
without incurring any risk. Mispricing is rapidly corrected in highly competitive
markets (Frenkel and Levich 1975,1977), therefore arbitrage traders need rapid
identification, fast transactions and low transaction costs. Many arbitrage



rel ationships have been identified in the financial markets. Our methoddogy can be
applied to any system of linea arbitrage pricing relationships. Sedion 1.1
describes the triangular foreign exchange abitrage we use to demonstrate the
methoddogy. Previous sudies of arbitrage identification have mainly been limited
to examining daily data and so might missmany of avail able intraday oppatunities.
Studies that have examined intraday data (Rhee aand Chang 1992 have been limited
to examining only a minute fradion d the data becaise of the need for
simultaneous observations. The methoddogy we present alows arbitrage
opportunities to be identified with irregular (non-simultaneous) observations.

Irregular times series presents a serious problem to conventional modelling
methoddogies. Several methoddogies for deding with erratic data have been
suggested in the literature. Muller et a 1990, suggest methods of linea
interpolation between erratic observations to oltain a regular homogenous times
series. Other authors (Ghysels and Jasiak 1995 have favoured nonlinea time
deformation (“businesstime” or “tick-time”), however this methoddogy has no
simple equivalent for multivariate series. The methoddogy we present describes the
dynamics of fundamental underlying arbitrage states which are observed as erratic
noisy exchange rates. We trea the aratic ariva as a missng data problem. The
Kaman filter described is discrete, as the data is only provide in quantised time
steps (i.e. seands), hovever the methoddogy could be extended to continuous
time problems with the Kaman-Bucy filter (Meditch 1969. The state space
representation described in sedion 2 allows us model the system at the maximum
resolution of the available data (Reuters data quoted by the second) .

Conventional modelling methoddogies may also be inappropriate for modelli ng
tick data & the distribution is often heavy tailed (Dacorogna 1995. Financial data,
espedadly quaations, are prone to data corruption and ouliers. Chung 1991,
discovered 0.2%6 of the MM futures quaes were outside of the daily high and
low and are therefore serious data crruption's. Sedion 3 details our robust
methoddogy which is smilar to that described by Masreliez and Martin 1975and
Martin and Vandaele 1983.

The state space representation is cgpable of incorporating both linea and non
linea models. The estimation d the models is performed using an E.M. agorithm
described in sedion 4,which was introduced by Dempster, Laird and Rubin 1977to
estimate parameters of models when some of the data is missing.



The methoddogy we present is suitable for red world financial data and increases
bath the speed and efficiency of arbitrage identificaion. We demonstrate the filter
on $£, DM, £/DM data from 19931995, the results of the etimation and
filtering are shown in section 5.

1.1 Foreign Exchange Arbitrage

We examine foreign exchange triangulation's for arbitrage oppatunities (athough
the same methoddogy can be goplied to many varieties of arbitrage). In the asence
of transaaions costs and kbd-ask spreal the following equili brium relationships
must hold for currency rates,

EX(0,1) EX(1,2) EX(2,0) =1

EX(0,1) EX(1,2) EX(2,3) EX(3,0) =1 Q)

.EX(O,l) EX(i,z) EX(é,s)... ...iEX(m,O) =1,

where EX(i,j) represents the spat rate for currency j when expressed in unts of
currency i. If the equili brium relationships in Eq.(1) had, then asingle courntriesm
exchange rates can be used to produce etimates of al the aoss rates,
EX(i,]) = EX(O,j) / EX(O,i), in this paper the US Dollar is used as the base
currency. Taking logarithms of the triangular relationships, all ows the aossrates to
be expressed as

log(EX(1,2)) = log(EX(0,2)) - log(EX(0,1))

log(EX (i, j)) = 10g(EX(0, j)) - 10g(EX(0,1)) 2)

Iog&EX(m -1,m)) = .Iog(EX(O, m)) - .Iog(EX(O, m-1)).

If the additive relationships of Eq.(2) are violated, an arbitrage oppatunity exists
where riskless profitable transadions can occur. Violations of the triangular
relationships are analogous to an oulier in the data set, the larger the mispricing the
larger the outlier. When market friction' sareincluded (transadion costs and kid-ask
spread) slight mispricing can occur within small bands aroundthe abitrage price
In the following sedion the triangular currency relationships are encoded within a



state spaceform and a multivariate Kalman filter is used to identify any significant
violations of Eq.(2).

2. Space Representation of FX Relationships

The methoddogy we present below describes how outliers can be robustly
identified/filtered in multi variate non-linea data. In this appli caion the outli ers that
the Kalman filter identifies are situations in which an arbitrage oppatuniti es exist.
The Kalman filter has been adapted to filter tick data and to updite the estimates of
the exchange rates every time step. The Kalman filter used is general enough to
hande both linea and nonlinea models. For nonlinea models a point-wise
lineaizationis performed to predict the Kalman filter’'s gate changes, andto updite
the reaursive estimates of the aror prediction covariance (Conna, Martin, Atlas
1994). The parameters of the models used in the Kaman filter are robustly
estimated from cleaned data, described in section 4.

The observation vedor z, in the state spacemodel represents the logarithm of eat

exchange rate observed. If all possble exchange rates (ticks) are observed in a
given second therg, is given by

0,2)

z, = (Z°9,7°9 .70 7D, 280 AT (3)

where z"'" =log(EX(i,j)). Usualy only a subset of Eq.(3) are observed. The
elements ofz, come in two principle groups :

» The log of than exchange rates for the base currency (0,j),

(0,m)

2

0,1) 0,2)

79,2 = Log (Base Rates) . 4)

* The log of the corresponding cross rates (i,j),

1,2) (1,m)

zZM 20 229 2™ = |og (Cross Rates) . (5)
The exchange rate mispricing problem can be formulated into a familiar state space
model,
X =f(x.) +e, (6)
Zt:HtXt+Vt - (7)



The state vedor x, in Eq.(6) represents the log of the abitrage value of the m

exchange rates for the base arrency ($) as well as the aito-regressve structure of
the system. The state transition vedor f(X,_,) in Eq.(6) represents the system

dynamics that may be linea or nontlinea (in the cae of alinea system f(x,) is
smply the state transition matrix ®,). The observation matrix, H; in Eq.(7),
extrads the base rates and uses the logarithmic arbitrage eguations to estimates the

cross rates The system described in Eq.(6) and Eq.(7) have two types of driving
noise, g, the state noise and v, the observation nase. The state noise e, represents

the variation diwe to the exchange rates underlying arbitrage dynamics. The
observation nase v, has two comporents v, =u, +w,, the first comporent u,,

represents the variation caused by the transadion costs and kdd ask spread, which
alow the priceto move fredy within unpofitable bound. The second componrent
w,, represents the alditive outliers within the data (whether they are data

corruption's or market misprice anomalies). The state transition vedor f(x,;) in

Eq.(6), can be described as a nonlinea multivariate aito-regressve (NMAR)
process for ead o the base arrency’s exchange rates. The multivariate aito-
regressive process, NMARY, p?,..., p'™) is defined by,

@D — £@) @ 0 (2) (2) (m) (m) (€]
X = f (Xt—l’ ’Xt p(1)7xt B ERRET] tp<2)1 X1 tp(m)) &

(2) — £ (2) (4D 1 (2) (2) (m) (m) (2)
X = f (Xt—l""’xt_p(l)’xt 11+ X —p@ e Xt—l""’xt_p(m))-l-gt

(M (@ C—e) @ (m) (m (m
f (Xt—l’ X p(l) ’Xt -1 X p(z) 1 Xt -1 Xt_p(m)) + gt !

(m)
X{

where x® x® ..., x™ are the log exchange rates for the base airrency, and p® is
the number of autoregressve terms for the i th exchange rate. In Eq.(8) f's

denote nonlinea functions governing ead individual exchange rate. The state
vedor X, , the state transition vedor f(x,_,) and the disturbancevedor e, in Eq.(6)

are defined as follows:

= (y@D @ (2) 2 (m) (m) T
Xy = (Xt s K p® 417 1 X X NONEEE X X p<m)+1) , 9)

FO¢) = (FO00), xS x By

(2) (2 (2)
LI G D s X p@a1r e

(10)

cey f m (Xt—l)’ Xt—l ’. X(m;))<m>+1)T’



e =(e?0,...62.0,....6™0,..)7, (11)

where £, the randam state naise asociated with the j th exchange rate, appeasin

i
the 1+ p‘™ position in the disturbance vecter (wherep® =0).
i=1

The observation matrix H; in Eq.(7) extrads the base rates and the aossrates from
the state vedor x,. Eadh of the rows of H; relate to a spedfic exchange rate, the

rows are defined as follows,
Ht :[hEO'DT, . hEO,m)T’ h§1,2)T’ e hEl,m)T’ e hEm—l,m)T]-(lz)
For base currency exchange rate (0,)) :

h®=[0 0

1x p(l)

0 ... 0

1X p( i-1)

10

1xp)

0 ... 0 0] (13)

so eachh(®) extracts the base currency ratefrom x, .
For cross currency exchange rates (i,)) :

hi)=[0 0 0 0 -1 0

1xp® e 1xp®

0 0, ] (14)

1xp(“

so eah h!'") estimates the aossrate (i,j) using the alditive log relationships (i.e.
i I, =%/ - x).

For regular (evenly spacal) time series al the rates would be observed on every
time step. Tick data, however, requires a methoddogy capable of modelling
irregular time series. On any given second ony currencies for which a trade (tick)
has occurred enter the observation vedor and orly the rows of the observation
matrix which correspondto an adual observation are used to updie the filtering
equations. The observation nase vedor v,, in Eq.(7) adso rewnfigures it’'s
dimensionality to correspond to the adua trades that occur. This gives rise to
several possible situations :

* No observations on any market,
z; =[NULL], H, =[NULL], Vi =[NULL].



The observation vector z,, the observation matrix H; and the observation noise
v, areset to null.

* Oneor more markets produce observations,
e.g. baserate 2" and crossrate z'* are traded.

th(O,i) 0 y D‘lt(o'i) 0 [{/t(O,i) O
z =0t O, =0 (0D Vi =06 0B
240 5 CTHUNE 595

* All the markets produce observations in one second,
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Expanding and contracting the observation equation in this way, allows the state
space model to cope with the erratic arrival of tick data and immediately
incorporate all new information to update the state estimates for all exchange rates.
The methodology produces an estimate of the states (exchange rates), an estimate of
the associated prediction error covariance, as well as the predictions of future states
at every second, regardless of any tick being observed.

3. Robust Kalman Filter

The underlying states x, in Eq.(6), are unknown, they are estimated by a robust
Kaman filter (Kaman 1961). Using robust methodologies protects the modelling
procedure from serious performance degradation caused by ill conditioned data.
The recursive non-Gaussian Kalman filter equations as described by Masreliez

1975 and Martin and Vandaele 1983 are detailed below. The robust one step ahead
predicted state vector X, and the predicted observation vector z, are given by,

>
Il
X

N>

=f(Xi4), (15)
H R, . (16)

t
t



where X,_, is the filtered state vector. The distribution terms e, and v, in Eq.(6)
and Eq.(7) are assumed to be zero mean, serialy independent and mutually
independent, however no assumptions about their distributions are made. The
covariance matrices of e, and v, ae denoted by Q,=E(e [&) and
R, = E(v, [V{) respectively. The modelling methodology we employ assumes that
the noise covariance matrices remain constant over time. For financial data this
assumption may be invalid (Ruiz 1994). The methodol ogy we present can be extend
to incorporate stochastic volatility, see Harvey Ruiz and Shephard 1992. In an effort
to limit the impact of stochastic volatility the estimation of Q, and R, was made
using a rolling window, see section 4. The robustly filtered estimate of the state
vector X,_, and the prediction error covariance matrix M, are defined by the

following recursive relationships,

Xt =Xt +MH9: (%), (17)
My =P PP +Q,, (18)
P =M, _MtH;Gt(Z)HtMt’ (19)

where 7z, =z, — 2, is the innovations vector (the observed residual), g,(z) is the
score function of the innovations with components,

Wmzl|Z_+0
@izl t‘l}cmp{zlzt_l}]‘l, (20)

0@l =550 &

and G,(z,) is defined as the differential of the score function, with elements,

d{g,(z)}
{G(@)} = % : (21)

For a non-linear state space model the state transition matrix &, in Eq.(18) is

estimated by a point-wise linearization of the non-linear model. The elements of
®, arethe partial derivatives of f evaluated about the robustly filtered estimates of

the state vector X, ,

:o”'f(xt)i

. . 22
b ax. X, =X (22)



In the standard Kalman filter the density function for the innowations is assumed to
be Gausdan. In order to oltain robustnesswe asume z, has a symmetric heavy-

tailed density function. The score function g,(z) for a Gausdan innowtion
processis linea. For a heavy taled density g,(z) is given by a nonlinea gain

function that limits the influence of large innowations. There is me latitude given
in choice of g,(z) in the &ove euations. The score functions for the Gaussan

distribution, Huber’s least informative distribution (Huber 1981) and the Hampel
re-descending function are shown in figure 1 (for the one-dimensional case).

Score Functions
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Figure 1: Score Functions: Gaussian, Huber, Hampel.

For the case of Gaussian innovations the score fungtig ) is given by,
gt (z) = (H{M(Hi +R) Ty . (23)

The derivations of g,(z) for the n-dimensional Huber and Hampel densities is
given in Bolland and Connor 1995.

The size of the innowations is the aiticd value which determines whether the
observation is an oulier (arbitrage oppatunity). The magnitude of the otlier is

defined by r?=(z —2t)' > (z,-2,) where Y is the mvariance matrix of the
innovetions. The measurement r, allows us to set a definition for an ottlier, so that
only mispricing of sufficient magnitude to allow for profitable trades are identified.

4. Model Specification and Estimation



In order to producethe robust Kalman filter, estimates of f(x,;), Q, and R, ned
to be obtained. The state transition function f(X,;) can be gproximated with
many different modelling methoddogies. There is a large body of empiricd
evidence to suggest that the dominant structure in f(x,_,) will be amean reverting
process(Fama 1965. The mean reversion could be an artificial artefad of the data.
Roll 1984,showed that bid-ask bource induced strong negative auto-correlationin
financial data. Time series of market prices contain bah bid and ask prices 2 if no
new information arrives the true value remains constant, any observed variation is
caused by the differencein bid and ask price Bourcing between bid and ask prices
gives rise to a strong negative auto-correlation shown in figure 2.

t-1 t t+1

Figure 2: Bid-Ask Bounce.

To limit the impad of the bid-ask bource mid-prices were modelled. The mean
reversion could also be an artefad of the price quantisation (prices quated in
discrete units).

The states of the system described are the abitrage values of the exchange rates.
The first differences of the state were taken to produce a stationary series.
Predicting state dhanges rather than there levels requires a slight re-formulation o
the f'(x,_,)’s in Eq.(10). The state transitions are formed by two comporents, a
randon wak comporent, xU) (the previous date), plus the state danges
d¥(x,, —X,,), S0 EQ.(10) becomes,

— 1 1 1 1
F(Xea) = (X3 +dP (X = X)X X
X2 +d@(x,_, -x_,),x2,...,x? s (24)

' N-p@4n?

(m) (m) m (m) T
e Xg d (Xt—l - Xt—2)1 Xt(—l)v-th_p(m)ﬂ) )

whered™(x,_, —x,_,) represents the NMAR structure of the state changes.



Tick data for three currencies $/DM, £/$, £/DM (1993-1995) was used to
demonstrate the methodology. The fundamental states are therefore the arbitrage
values of $/DM, £/$, so x, = (log($/ DM"),log($/ £7))". The states were estimated
by several different models:

* Naiverandom wak model (no filter), X, = X,_,

* Random walk Kalman filter, X, = X,_, +M H,0,(Z)

e Linear MAR(1,1), X, = f(X,..;) +M H,0,(Z)

* Neura Network NMAR(n,n), X, = f(X,_;,....X,_,) +M H,0,(Z)

To produce an estimation set for an MAR(n,n) we require data examples with n
consecutive state changes across al states. Due to the erratic nature of the tick data
constructing an estimation data set without missing observations for with more than
one lag proved difficult. An initial linear MAR(1,1) model was estimated from the
data where ticks occurred on consecutive seconds for both the £/$ and £/DM
exchange rates. Using the MAR(1,1) as an estimate of f(x,_,), the robust Kalman
filter was applied to the whole data set produced a filtered data set. This data set
contained the filtered values of the actual observed state changes and the estimated
state changes produced by the simple linear model. An MAR(n,n) estimation set
could now be constructed from the filtered data, with the estimated state changes
filling the problematic missing observations. To avoid the problems of non-
stationarity in the dynamics over the whole data set (two years), the parameters
were estimated on arolling window of one trading week, and re-estimated daily.

4.1 Estimation of M odel Parameters

An estimation maximisation (EM) algorithm is employed to estimate the neural
network parameters, denoted A, of EQ.(10) or equivalently Eq.(24). The EM
algorithm, see Dempster, Laird, and Rubin (1977), is the standard approach when
estimating model parameters with missing data. The EM algorithm has been used in
the neural network community before, see for example Jordan and Jacobs, and
Connor, Martin, and Atlas (1994).

The E-Step, given in section 4.1, estimates the missing data. With the estimated
missing data assumed to be true, the parameters are then chosen by way of



maximising the likelihood. This procedure is iterative with new parameter estimates
giving rise to new estimates of missing data which in turn give rise newer
parameter estimates.

4.11 E-Step

During the estimation step, the missing data, namely the x;, v, and e, of Eq.(6)

and Eq.(7) must be estimated. This is accomplished using the robust Kalman filter
of section 3. The estimated missing datais denoted X;, Vi, and &.

4.12 M-Step

The robust likelihood for the system defined by Eq.(6) and Eq.(7) is given by

N

) =[] P{z12.} (25),

where p{z|z,.,} is a function of r?, the magnitude of the innovations

2=~z -2,(Z,A)' Y (Z -2,(Z,4,A) ad Y, =H,MH, +R, is the
covariance matrix. This has been derived by De Jong 1988 for the case where initial
state estimates and noise variances are considered. The log likelihood is defined by

N
L(A) = log(p{z1Z..}) (26)
=1
The parameters to maximise the likelihood,
-~ agmax N _
A=y log(p{z 7)) (27)
t=1

Simple gradient descent is used to maximise (27), this is done by ignoring the
dependenceof 3. * on A

J Lt (/\) — id log(p{ztlzt—l}) H J )A(t(it—li"Wit—p!A)

28
oA, & 0d z, : oA, (28)
ol yA VA
Noting that {g(z,)}. = og(ﬁp({ Z‘)l 1)) from Eq.(20) and using Eq.(17),
Zt i
g(zt),HtMt =(it _)/Zt(it—l’“"‘)zt—p1/\)) (29)
which can be used with Eq.(28) to get the gradient in terms of clean data
oL (A N _ s _ ' B 15)% ()'"('_ ,...’i_ ,/\)
%:Z(Xt—Xt(xt_l,...’xt_p,A)) Mtl t\ -1 t-p (30)

. & N,

which is equivalent to doing back-propagation on clean data.



Outlier Observations
When an outlier, z;, is observed rtz will be very large causing the term g.(rtz) to

limit the contribution of z; to the likelihood in (26). As mentioned in section 3, the
prediction variance ), reflecting greater uncertainty in the fundamenta rates.
Future contributions to the likelihood will be effected by this increased uncertainty.

Univariate Case
If only asingle quote is observed at a given time t, the associated gradient is given
by
J L (M) . 2 02(A)
=-2(z, —2,(A))’ 31

which if z corresponds to a fundamental dollar denominated rate is the same as
found in the univariate case first explored in Connor, Martin and Atlas (1994).
Cross Currency

If the quote corresponds to a cross currency, related to the dollar denominated rates

by zt(i’j) = x{1) - xt(j) , the gradient will be composed of contributions from al the
predictors related through HM

0L (A) _ ) a0 , . .
o =2(z" =28V (A)) Z(Mk,:il,t -M2)

& (k)
9% ) 3y
oA

Several Quotes of the Same Currency

If several quotes are observed for one of the underlying dollar denominated rates,
the learning agorithm simplifies greatly. The prediction covariance matrix and
corresponding inverse are given by:

@ b b bQO e d - d dOd

[l [l

%) a - b bp ) gj ¢ - d dn
>.=0 gy =0 NN (33)

h b --- a bU 4 d --- ¢ dU

(] U UJ U

B b - b af M d - d cg

where ¢ and d are derived from ac+ (Ny —Dbd =1 and ad +bc+ (N; —2)bd =0
which allows the reduction of Eq.(33) to the smpler form

9 L, (7) 01 % .0 2 % (A)
=V - ~ % (A)'k 34
o) (G 2, %)k =, (34)



where ky, =c+(Ny —1)d. Sincesevera qudes are avail able, the alditive noiseis
smoothed ou and ore has more wnfidence in the average of the quaes,
N
’\T > x| than any of the quates would be given aone. This added confidenceis
ti=1
expressed in terms of the stronger gradient in (i) wkqe\rte> kq for Ny >1.

No Observations

Due to the aratic nature of tick data, often there will be no olservations during a
given period. For this misang data, there will be no contribution to the likelihood
given in (26). But as in the cae with extreme outliers, the uncertainty in future
predictions,) , will grow and effect the likelihood of future observations.

4.2 Estimation of Noise Variances

An iterative procedure was applied to produwce etimates of Q, and R,. The
observation nase mvariance R,, has two comporents, u, the market friction's
(bid-ask spread, transadion costs etc.) and w, the alditive outliers (pricing
anomalies). As filtering procedure interpolates through additive outliers, the
estimate of R, is only dependent on the first comporent u,, R, = E(u, [1}).
Initial estimate of observation ndse mvariance R/, and the state noise @variance
Q,, were produwed by maximising the likelihood d the MAR(1,1) state space
model. These ettimates of R, and Q, were refined duing the neural network
estimation process by repeated application of maximum likelihood.

5. Results

Thetick datawas obtained from Reuters, April 1993 April 1995,the mid-price was

modelled. The initial linea MAR(1,1) model produwced had a state dange

transitions matrix given by,

D<(1>D 05065 0.035800 [k - x%, 0
= e (35)

f(x
() = B 0 Hoosea ~oaasf 5 - x5

The initia data set from which the MAR(1,1) parameter's were estimated, was
constructed from regions of conseautive ticks (500 regions of conseautive points
covering approximately two weeks trading were used). The strength o the diagonal
terms demonstrate the meaning reverting. This model was used in the Kalman filter



to prodwce afiltered data set withou missng observations, from which subsequent
models were produced.

Table 1 show the filtering results for the neural network Kalman filter and the naive

randam walk hypothesis. The Kalman filter produces superior results for bath the

mean squared error (MSE) and the robust median absolute deviations (MAD).
Table 1: Model Comparison.

M odel M SE MAD
RW Model 2.169 (10" 0.0084
(No Filter)

Neural Network 1.511 (1d) 0.0075
Kalman Filter

Figures 3 and 4 demonstrate the Kalman filter identifying outliers. In Figure 3 the
filtered estimated states for the $/DM exchange rate ae represented by the solid
line, the adual observed trades by circles, and trades occurring on the other
exchange rates by verticd lines. Thefiltered states represent the estimate of the true
arbitrage value (not the bid or ask values). The dfed of market friction's has been
incorporated into the estimate Ry, so filtered states are dways within the adual bid
and ask values observed. The Kalman filter identifies an oulier and wses pure
prediction for the estimate of the $/DM rate & time 15.07.41and dces naot foll ow
the spurious price movement. The mispricing is filtered and classfied as an outlier
(r, =4.65) by the robust algorithm presented here. Figure 3 also demonstrates how
new information accurring on any of the exchange rates is immediately
incorporated in the robust estimates of all the states. At time 15.07.27 the verticd
dotted line indicaes the observation d a DM/E trade, the estimate of the $/£ stateis
instantly update to incorporate the affect of the rise in the DM/£.
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Figure 3: Identification of Market Mispricing.

Table 2: Tick Data (bold) and Estimated Rates (normal).

$/DM | £/$ | £Dm | $/DM £/$ £/DM | SD (10”) | SD (10™)
Ticks | Ticks | Ticks | Estimate | Estimate | Estimate | Ln($/D) | Ln(£/$)
1.6601 2.4351 | 1.66018 | 1.46637 | 2.43444 | 4.33 8.38
1.66021 | 1.46624 | 2.43439 | 4.21 7.9

1.6604 1.66031 | 1.46627 | 2.43447 | 4.35 8.18
1.66030 | 1.46626 | 2.43443 | 4.21 7.71

1.4662 1.66031 | 1.46622 | 2.43439 | 4.65 8.38
1.66031 | 1.46624 | 2.43440 | 4.34 7.7

1.66031 | 1.46623 | 2.43440 | 4.57 7.9

1.6608 1.66055 | 1.46617 | 2.43464 | 4.6 8.4
1.66042 | 1.46619 | 2.43449 | 4.21 8.31

1.4665 | 2.4356 | 1.66047 | 1.46638 | 2.43488 | 4.65 8.38

Table 2 demonstrates the ability of the Kalman filter to deal with the erratic arrival
of tick data. Bold font exchange rates represent seconds when ticks are observed,
and norma font represents the Kaman filter estimates. When incomplete
observation vectors are observed the Kalman filter uses the multivariate auto-
regressive structure to estimate the unseen rates. In seconds where no observations
are observed the filter uses pure prediction to estimate the missing currency rates.
The last two columns in table 2 show the estimated prediction standard deviations



for the log of the states. Again, bold font indicates the seconds where ticks where
observed, and normal font indicates the recursive estimates of the Kalman filter.
The prediction error standard deviations grows steadily in periods where no ticks
are observed, and collapses to the one second state prediction error standard
deviation for the prediction based on new information (ticks).
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Figure 4: Identification of Market Mispricing.



6. Conclusion

We have shown the dfedivenessof one filtering approac for identifying arbitrage
oppatunities on currency tick data. The methoddogy is idedly suited to the poa
data quality of the financial markets (erratic arival and additive outliers). The
Kaman filter produces rate estimates every seaond whether or not any ticks are
adually observed, this incresses baoth the speal and efficiency of identifying
arbitrage oppatunities. It is graightforward to extend the &ove analysis to many
more exchange rates and cross rates, increasing the posshility of finding
mispricing. In addition this methoddogy could be readily applied to al forms of
arbitrage which are described by similar sets of price relationships.
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