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ABSTRACT

We present a methodology for modelling real world high frequency financial data.
The methodology copes with the erratic arrival of data and is robust to additive
outliers in the data set. Arbitrage pricing relationships are formulated into a linear
state space representation. Arbitrage opportunities violate these pricing
relationships and are analogous to multivariate additive outliers. Robust
identification/filtering of arbitrage opportunities in the data is accomplished by
Kalman filtering. The state space model used to describe the pricing relationships
is general enough to handle both linear and non-linear models. The recursive
Kalman equations are adapted to filter tick data, cope with the erratic arrival of
observations and produce estimates of all the arbitrage prices on every time step.
We demonstrate the methodology with a robust neural network filter applied to
foreign exchange triangular arbitrage. Tick data from three markets is used: $/DM,
£/$, £/DM 1993-1995. The filter produces estimates of the arbitrage price for all
exchange rates on every second, increasing both the speed and efficiency of
arbitrage identification.

KEYWORDS: Arbitrage, Foreign Exchange, Multivariate Kalman Filter, Neural
Network, Outliers, Robust, Tick Data.

1. Introduction

Arbitrage is a fundamental mechanism for achieving efficiency in the financial
markets (Ross 1976). An arbitrage opportunity occurs when a price discrepancy
exists between two or more highly related assets. The opportunity can be exploited
by buying the under priced asset and selling the over priced asset, producing a profit
without incurring any risk. Mispricing is rapidly corrected in highly competitive
markets (Frenkel and Levich 1975,1977), therefore arbitrage traders need rapid
identification, fast transactions and low transaction costs. Many arbitrage



relationships have been identified in the financial markets. Our methodology can be
applied to any system of linear  arbitrage pricing relationships. Section 1.1
describes the triangular foreign exchange arbitrage we use to demonstrate the
methodology.  Previous studies of arbitrage identification have mainly been limited
to examining daily data and so might miss many of available intraday opportunities.
Studies that have examined intraday data (Rhee and Chang 1992) have been limited
to examining only a minute fraction of the data because of the need for
simultaneous observations. The methodology we present allows arbitrage
opportunities to be identified with irregular (non-simultaneous) observations.

Irregular times series presents a serious problem to conventional modelli ng
methodologies. Several methodologies for dealing with erratic data have been
suggested in the literature. Muller et al 1990, suggest methods of linear
interpolation between erratic observations to obtain a regular homogenous times
series. Other authors (Ghysels and Jasiak 1995) have favoured non-linear time
deformation (“business-time” or “ tick-time”), however this methodology has no
simple equivalent for multivariate series. The methodology we present describes the
dynamics of fundamental underlying arbitrage states which are observed as erratic
noisy exchange rates. We treat the erratic arrival as a missing data problem. The
Kalman filter described is discrete, as the data is only provide in quantised time
steps (i.e. seconds), however the methodology could be extended to continuous
time problems with the Kalman-Bucy filter (Meditch 1969).  The state space
representation described in section 2 allows us model the system at the maximum
resolution of the available data (Reuters data quoted by the second) .

Conventional modelli ng methodologies may also be inappropriate for modelli ng
tick data as the distribution is often heavy tailed (Dacorogna 1995). Financial data,
especially quotations, are prone to data corruption and outliers. Chung 1991,
discovered 0.25% of the MMI futures quotes were outside of the daily  high and
low and are therefore serious data corruption’s. Section 3 details our robust
methodology which is similar to that described by Masreliez and Martin 1975 and
Martin and Vandaele 1983.

The state space representation is capable of  incorporating both linear and non-
linear models. The estimation of the models is performed using an E.M. algorithm
described in section 4, which was introduced by Dempster, Laird and Rubin 1977 to
estimate parameters of models when some of the data is missing.



The methodology we present is suitable for real world financial data and increases
both the speed and eff iciency of arbitrage identification. We demonstrate the filter
on $/£, $/DM, £/DM data from 1993-1995, the results of the estimation and
filtering are shown in section 5.

1.1 Foreign Exchange Arbitrage

We examine foreign exchange triangulation’s for arbitrage opportunities (although
the same methodology can be applied to many varieties of arbitrage). In the absence
of transactions costs and bid-ask spread the following equili brium relationships
must hold for currency rates,

EX(0,1) EX(1,2) EX(2,0) = 1

EX(0,1) EX(1,2) EX(2,3) EX(3,0) = 1

EX(0,1) EX(1,2) EX(2,3)...   ...EX(m,0) = 1,

� � � �
(1)

where EX(i,j) represents the spot rate for currency j when expressed in units of
currency i. If the equili brium relationships in Eq.(1) hold, then a single countries m
exchange rates can be used to produce estimates of all the cross rates,
EX(i, j) = EX(0, j) EX(0,i)/ , in this paper the US Dollar is used as the base

currency. Taking logarithms of the triangular relationships, allows the cross rates to
be expressed as

log(EX(1,2)) = log(EX(0,2)) -  log(EX(0,1))

 

log(EX(i, j)) = log(EX(0, j)) - log(EX(0,i))

log(EX(m-1,m)) = log(EX(0,m)) -  log(EX(0,m-1)).

� � �

� � �
(2)

If the additive relationships of Eq.(2) are violated, an arbitrage opportunity exists
where riskless, profitable transactions can occur. Violations of the triangular
relationships are analogous to an outlier in the data set, the larger the mispricing the
larger the outlier. When market friction' s are included (transaction costs and bid-ask
spread) slight mispricing can occur within small bands around the arbitrage price.
In the following section the triangular currency relationships are encoded within a



state space form and a multivariate Kalman filter is used to identify any significant
violations of Eq.(2).

2. Space Representation of FX Relationships

The methodology we present below describes how outliers can be robustly
identified/filtered in multivariate non-linear data. In this application the outliers that
the Kalman filter identifies are situations in which an arbitrage opportunities exist.
The Kalman filter has been adapted to filter tick data and to update the estimates of
the exchange rates every time step. The Kalman filter used is general enough to
handle both linear and non-linear models. For non-linear models a point-wise
linearization is performed to predict the Kalman filter’s state changes, and to update
the recursive estimates of the error prediction covariance (Connor, Martin, Atlas
1994). The parameters of the models used in the Kalman filter are robustly
estimated from cleaned data, described in section 4.

The observation vector zt  in the state space model represents the logarithm of each

exchange rate observed. If all possible exchange rates (ticks) are observed in a
given second then, zt  is given by

zt t t t
m

t t
m

t
m m Tz z z z z z= −( , , , , , , , , )( , ) ( , ) ( , ) ( , ) ( , ) ( , )0 1 0 2 0 1 2 1 1

� � � , (3)

where zt
i j( , ) = log(EX(i, j)) . Usually only a subset of Eq.(3) are observed. The

elements of z t  come in two principle groups :

• The log of the m exchange rates for the base currency (0,j),
 
 z z z Base Ratest t t

m( , ) ( , ) ( , ), , , ( )0 1 0 2 0
� = Log . (4)

 
• The log of the corresponding cross rates (i,j),
 
 z z z z Cross Ratest t

m
t t

m m( , ) ( , ) ( , ) ( , ), , , , , ( )1 2 1 2 3 1
� �

− = Log . (5)

The exchange rate mispricing problem can be formulated into a familiar state space
model,

x f x et t t= +−( )1  , (6)
z H x vt t t t= +  . (7)



The state vector xt  in Eq.(6) represents the log of the arbitrage value of the m

exchange rates for the base currency ($) as well as the auto-regressive structure of
the system. The state transition vector f x( )t−1  in Eq.(6) represents the system
dynamics that may be linear or non-linear (in the case of a linear system f x( )t−1  is

simply the state transition matrix Φt ). The observation matrix, Ht in Eq.(7),

extracts the base rates and uses the logarithmic arbitrage equations to estimates the
cross rates The system described in Eq.(6) and Eq.(7) have two types of driving
noise, et  the state noise and v t  the observation noise. The state noise et  represents

the variation due to the exchange rates underlying arbitrage dynamics. The
observation noise v t  has two components v u wt t t= + , the first component u t ,

represents the variation caused by the transaction costs and bid ask spread, which
allow the price to move freely within unprofitable bounds. The second component
w t , represents the additive outliers within the data (whether they are data
corruption's or market misprice anomalies). The state transition vector f x( )t−1  in

Eq.(6), can be described as a non-linear multivariate auto-regressive (NMAR)
process for each of the base currency’s exchange rates. The multivariate auto-
regressive process, NMAR( , , , )( ) ( ) ( )p p p m1 2

�  is defined by,

x f x x x x x xt t t p t t p t
m

t p

m
tm

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , , , , , , , , )( ) ( ) ( )

1 1
1

1 1
1

2 2
1

1
1 2= +− − − − − −

� � � � ε
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t t t p t t p t
m
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m
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t
m m
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m
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ε

ε
(8)

where x x xt t t
m( ) ( ) ( ), , ,1 2

�  are the log exchange rates for the base currency, and p(i) is

the number of autoregressive terms for the i th exchange rate. In Eq.(8) f i( ) ’s
denote non-linear functions governing each individual exchange rate. The state
vector xt , the state transition vector f x( )t−1  and the disturbance vector et  in Eq.(6)

are defined as follows:

xt t t p t t p t
m

t p

m Tx x x x x x m=
− + − + − +

( , , , , , , , , , )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1

1

1 2

1

2

11 2� � � � , (9)

( )

f x x

x

x

( ) ( ( ), , , ,

( ), , , , ,

, ( ), , , ) ,

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )
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m T
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(10)



et t t t
m T= ( , , , , , , , , )( ) ( ) ( )ε ε ε1 20 0 0� � � , (11)

where ε t
j( ) , the random state noise associated with the j th exchange rate, appears in

the 1 1

1

+ −

=
∑ p i

i

j
( )  position in the disturbance vector et  (where p( )0 0=  ).

The observation matrix Ht in Eq.(7) extracts the base rates and the cross rates from
the state vector xt . Each of the rows of Ht relate to a specific exchange rate, the

rows are defined as follows,

       H h h h h ht t
T

t
m T

t
T

t
m T

t
m m T= −[ , , , , , , , ]( , ) ( , ) ( , ) ( , ) ( , )0 1 0 1 2 1 1

� � � . (12)

For base currency exchange rate (0,j) :

h 0 0 0 0t
j

x p x p x p x pj j m
( , ) [ ]( ) ( ) ( ) ( )
0

1 1 1 1
0 0 1 0 01 1= −� � , (13)

so each ht
j( , )0 extracts the base currency rate xt

j  from x t .

For cross currency exchange rates (i,j) :

          h 0 0 0 0t
i j

x p x p x p x pi j m

( , ) [ ]( ) ( ) ( ) ( )= −0 0 1 1 0
1 1 1 11 � � , (14)

so each h t
i j( , )  estimates the cross rate (i,j) using the additive log relationships (i.e.

h xt
i j

t t
j

t
ix x( , ) ⋅ = − ).

For regular (evenly spaced) time series all the rates would be observed on every
time step. Tick data, however, requires a methodology capable of  modelli ng
irregular time series. On any given second only currencies for which a trade (tick)
has occurred enter the observation vector and only the rows of the observation
matrix which correspond to an actual observation are used to update the filtering
equations. The observation noise vector v t , in Eq.(7) also reconfigures it’s

dimensionality to correspond to the actual trades that occur. This gives rise to
several possible situations :

• No observations on any market,
 zt NULL= [ ] , H t NULL= [ ], v t NULL= [ ] .



 The observation vector zt , the observation matrix Ht and the observation noise
v t  are set to null.

 
• One or more markets produce observations,
 e.g. base rate zt

i( , )0 and cross rate zt
j k( , )  are traded.

 zt
t

i

t
j k

z

z
==













( , )

( , )

0
, H

h

h
t

t
i

t
j k

=










( , )

( , )

0

, v t
t

i

t
j k

v

v
=













( , )

( , )

0
.

 
• All the markets produce observations in one second,
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Expanding and contracting the observation equation in this way, allows the state
space model to cope with the erratic arrival of tick data and immediately
incorporate all new information to update the state estimates for all exchange rates.
The methodology produces an estimate of the states (exchange rates), an estimate of
the associated prediction error covariance, as well as the predictions of future states
at every second, regardless of any tick being observed.

3. Robust Kalman Filter

The underlying states x t  in Eq.(6), are unknown, they are estimated by a robust

Kalman filter (Kalman 1961). Using robust methodologies protects the modelling
procedure from serious performance degradation caused by ill conditioned data.
The recursive non-Gaussian Kalman filter equations as described by Masreliez
1975 and Martin and Vandaele 1983 are detailed below. The robust one step ahead
predicted state vector �x t  and the predicted observation vector �zt  are given by,

� (~ )x f xt t= −1 , (15)
� �z H xt t t= . (16)



where ~xt−1  is the filtered state vector. The distribution terms e t  and v t  in Eq.(6)

and Eq.(7) are assumed to be zero mean, serially independent and mutually
independent, however no assumptions about their distributions are made. The
covariance matrices of e t  and v t  are denoted by Q e et t t= ⋅ ′E( )  and
R v vt t t= ⋅ ′E( )  respectively. The modelling methodology we employ assumes that

the noise covariance matrices remain constant over time. For financial data this
assumption may be invalid (Ruiz 1994). The methodology we present can be extend
to incorporate stochastic volatility, see Harvey Ruiz and Shephard 1992. In an effort
to limit the impact of stochastic volatility the estimation of Q t  and R t  was made

using a rolling window, see section 4. The robustly filtered estimate of the state
vector ~xt−1  and the prediction error covariance matrix Mt  are defined by the

following recursive relationships,

~ � ( )x x M H g zt t t t t t== ++ , (17)
M P Qt t t t t+ = ′ +1 Φ Φ , (18)

( )P M M H G z H Mt t t t t t t t= − ′ , (19)

where z z zt t t= − �  is the innovations vector (the observed residual), g zt t( )  is the

score function of the innovations with components,

{ } { } { }g z
z

z
zt t i

t t

t i
t t

p Z
p Z( )

|

( )
[ | ]= −









 ⋅−

−
−∂

∂
1

1
1 , (20)

and ( )G zt t  is defined as the differential of the score function, with elements,

{ } { }
Gt t ij

t t i

t j

( )
( )

( )
z

g z

z
=

∂
∂

. (21)

For a non-linear state space model the state transition matrix Φ t  in Eq.(18) is

estimated by a point-wise linearization of the non-linear model. The elements of
Φ t  are the partial derivatives of f  evaluated about the robustly filtered estimates of
the state vector ~xt ,

( )
Φ i j

t i

j t t

f

x, ~=
=

∂
∂

x

x x
. (22)



In the standard Kalman filter the density function for the innovations is assumed to
be Gaussian. In order to obtain robustness we assume zt  has a symmetric heavy-
tailed density function. The score function g zt t( )  for a Gaussian innovation
process is linear. For a heavy tailed density g zt t( )  is given by a non-linear gain

function that limits the influence of large innovations. There is some latitude given
in choice of g zt t( )  in the above equations. The score functions for the Gaussian

distribution, Huber’s least informative distribution (Huber 1981) and the Hampel
re-descending function are shown in figure 1 (for the one-dimensional case).
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Figure 1: Score Functions: Gaussian, Huber, Hampel.

For the case of Gaussian innovations the score function g zt t( )  is given by,

g z H M H R zt t t t t t t( ) ( )== ′′ ++ ⋅⋅−−1 . (23)

The derivations of g zt t( )  for the n-dimensional Huber and Hampel densities is

given in Bolland and Connor 1995.

The size of the innovations is the criti cal value which determines whether the
observation is an outlier (arbitrage opportunity). The magnitude of the outlier is

defined by rt t t t t
2 1= − ′ ∑ −−( � ) ( � )z z z z  where ∑  is the covariance matrix of the

innovations. The measurement rt allows us to set a definition for an outlier, so that
only mispricing of sufficient magnitude to allow for profitable trades are identified.

4. Model Specification and Estimation



In order to produce the robust Kalman filter, estimates of f x( )t−1 , Q t  and R t  need
to be obtained. The state transition function f x( )t−1  can be approximated with

many different modelli ng methodologies. There is a large body of empirical
evidence to suggest that the dominant structure in f x( )t−1  will be a mean reverting

process (Fama 1965). The mean reversion could be an artificial artefact of the data.
Roll 1984, showed that bid-ask bounce induced strong negative auto-correlation in
financial data. Time series of market prices contain both bid and ask prices so if no
new information arrives the true value remains constant, any observed variation is
caused by the difference in bid and ask price. Bouncing between bid and ask prices
gives rise to a strong negative auto-correlation shown in figure 2.

Bid Price

Ask Price

t-1 t t+1

Value

Figure 2: Bid-Ask Bounce.

To limit the impact of the bid-ask bounce, mid-prices were modelled. The mean
reversion could also be an artefact of the price quantisation (prices quoted in
discrete  units).

The states of the system described are the arbitrage values of the exchange rates.
The first differences of the state were taken to produce a stationary series.
Predicting state changes rather than there levels requires a slight re-formulation of
the f t

i
t( )x −1 ’s in Eq.(10). The state transitions are formed by two components, a

random walk component, xt
i
−1

( )  (the previous state), plus the state changes
d i

t t
( )( )x x− −−1 2 , so Eq.(10) becomes,
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f x x x

x x

x x
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(24)

where d i
t t

( )( )x x− −−1 2  represents the NMAR structure of the state changes.



Tick data for three currencies $/DM, £/$, £/DM (1993-1995) was used to
demonstrate the methodology. The fundamental states are therefore the arbitrage
values of $/DM, £/$, so x t

t= ∗ ∗(log($ / ), log($ / ))DM £ . The states were estimated

by several different models:

• Naive random walk model (no filter), ~ ~x xt t= −1

 
• Random walk Kalman filter, ~ ~ ( )x x M H g zt t t t t t= +−1

 
• Linear MAR(1,1), ~ (~ ) ( )x x M H g zt t t t t tf= +−1

 
• Neural Network NMAR(n,n), ~ (~ , , ~ ) ( )x x x M H g zt t t n t t t tf= +− −1 �

 
To produce an estimation set for an MAR(n,n) we require data examples with n
consecutive state changes across all states. Due to the erratic nature of the tick data
constructing an estimation data set without missing observations for with more than
one lag proved difficult. An initial linear MAR(1,1) model was estimated from the
data where ticks occurred on consecutive seconds for both the £/$ and £/DM
exchange rates. Using the MAR(1,1) as an estimate of f x( )t−1 , the robust Kalman

filter was applied to the whole data set produced a filtered data set. This data set
contained the filtered values of the actual observed state changes and the estimated
state changes produced by the simple linear model. An MAR(n,n) estimation set
could now be constructed from the filtered data, with the estimated state changes
filling the problematic missing observations. To avoid the problems of non-
stationarity in the dynamics over the whole data set (two years), the parameters
were estimated on a rolling window of one trading week, and re-estimated daily.

4.1 Estimation of Model Parameters

An estimation maximisation (EM) algorithm is employed to estimate the neural
network parameters, denoted λ , of Eq.(10) or equivalently Eq.(24). The EM
algorithm, see Dempster, Laird, and Rubin (1977), is the standard approach when
estimating model parameters with missing data. The EM algorithm has been used in
the neural network community before, see for example Jordan and Jacobs, and
Connor, Martin, and Atlas (1994).

The E-Step, given in section 4.1, estimates the missing data. With the estimated
missing data assumed to be true, the parameters are then chosen by way of



maximising the likelihood. This procedure is iterative with new parameter estimates
giving rise to new estimates of missing data which in turn give rise newer
parameter estimates.

4.11 E-Step

During the estimation step, the missing data, namely the xt ,  v t , and et , of Eq.(6)

and Eq.(7) must be estimated. This is accomplished using the robust Kalman filter
of section 3. The estimated missing data is denoted ~xt , ~v t , and ~et .

4.12 M-Step

The robust likelihood for the system defined by Eq.(6) and Eq.(7) is given by

{ }l p t
t

N

( ) |λ = −
=

∏ z Zt 1
1

(25),

where { }p tz Zt | −1  is a function of rt
2 , the magnitude of the innovations

rt j j t j j j t
2

1
1

1= − − ′ ∑ −−
−

−(~ � ( , )) (~ � ( , ))z z Z z z Zλ λ  and ∑ = +t t
T

t t tH M H R  is the

covariance matrix. This has been derived by De Jong 1988 for the case where initial
state estimates and noise variances are considered. The log likelihood is defined by

{ }L p t
j

N

( ) log( | )λ = −
=

∑ z Zt 1
1

(26)

The parameters to maximise the likelihood,

{ }
�

λ
λ

j
t

t

N

p= −
=

∑
arg max

log( | )z Zt 1
1

. (27)

Simple gradient descent is used to maximise (27), this is done by ignoring the
dependence of ∑ −

t
1  on λ
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∂
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∂λ
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1

1 �
(28)

Noting that { } { }
g z

z Z

z
( )

log( | )

( )t i

t

t i

p
= −∂

∂
t 1  from Eq.(20) and using Eq.(17),

( )g z H M x x x x( ) ~ � (~ , ,~ , )t t t t t t t p′ = −
′

− −1 � λ (29)

which can be used with Eq.(28) to get the gradient in terms of clean data

( )∂ λ
∂λ

λ
∂ λ

∂λ
Lt

i
t t t t p t

t t t p

it

N( ) ~ � (~ , ,~ , )
� (~ , ,~ , )

= −
′

− −
− − −

=
∑ x x x x M

x x x
1

1 1

1

�
�

(30)

which is equivalent to doing back-propagation on clean data.



Outlier Observations

When an outlier, zt , is observed rt
2  will be very large causing the term (( ))g rt. 2  to

limit the contribution of zt  to the likelihood in (26). As mentioned in section 3, the
prediction variance ∑ t  reflecting greater uncertainty in the fundamental rates.

Future contributions to the likelihood will be effected by this increased uncertainty.

Univariate Case
If only a single quote is observed at a given time t, the associated gradient is given
by

∂ λ
∂λ

λ ∂ λ
∂λ

L
z z s

zt

i
t t zz t

t( )
( � ( ))

� ( )
= − − ′ −2 1 (31))

which if zt  corresponds to a fundamental dollar denominated rate is the same as

found in the univariate case first explored in Connor, Martin and Atlas (1994).
Cross Currency
If the quote corresponds to a cross currency, related to the dollar denominated rates

by z x xt
i j

t
i

t
j( , ) ( ) ( )== −− , the gradient will be composed of contributions from all the

predictors related through H Mt t
−−1
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= − − ′ −− −∑2 1 1 . (32)

Several Quotes of the Same Currency
If several quotes are observed for one of the underlying dollar denominated rates,
the learning algorithm simplifies greatly. The prediction covariance matrix and
corresponding inverse are given by:
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where c and d are derived from ac N bdt++ −− ==( )1 1 and ad bc N bdt++ ++ −− ==( )2 0

which allows the reduction of Eq.(33) to the simpler form
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where k c N dN tt
= + −( )1 . Since several quotes are available, the additive noise is

smoothed out and one has more confidence in the average of the quotes,

1

1N
x

t

i
t

i

N t ( )

=
∑ , than any of the quotes would be given alone. This added confidence is

expressed in terms of the stronger gradient in (i) where k kN t
> 1 for N t > 1.

No Observations
Due to the erratic nature of tick data, often there will be no observations during a
given period. For this missing data, there will be no contribution to the likelihood
given in (26). But as in the case with extreme outliers, the uncertainty in future
predictions, ∑ t  will grow and effect the likelihood of future observations.

4.2 Estimation of Noise Variances

An iterative procedure was applied to produce estimates of Q t  and R t . The
observation noise covariance R t , has two components, u t  the market friction's
(bid-ask spread, transaction costs etc.) and w t  the additive outliers (pricing

anomalies). As filtering procedure interpolates through additive outliers, the
estimate of R t  is only dependent on the first component u t , R u ut t tE∗ = ⋅ ′( ) .

Initial estimate of observation noise covariance R t
∗ , and the state noise covariance

Q t , were produced by maximising the likelihood of the MAR(1,1) state space

model. These estimates of R t
∗  and Q t  were refined during the neural network

estimation process by repeated application of maximum likelihood.

5. Results

The tick data was obtained from Reuters, April 1993-April 1995, the mid-price was
modelled. The initial li near MAR(1,1) model produced had a state change
transitions matrix given by,
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(35)

The initial data set from which the MAR(1,1) parameter’s were estimated, was
constructed from regions of consecutive ticks (500 regions of consecutive points
covering approximately two weeks trading were used). The strength of the diagonal
terms demonstrate the meaning reverting. This model was used in the Kalman filter



to produce a filtered data set without missing observations, from which subsequent
models were produced.

Table 1 show the filtering results for the neural network Kalman filter and the naive
random walk hypothesis. The Kalman filter produces superior results for both the
mean squared error (MSE) and the robust median absolute deviations (MAD).

Table 1: Model Comparison.

Model MSE MAD
RW Model
(No Filter)

2.169  (10-4) 0.0084

Neural Network
Kalman Filter

1.511  (10-4) 0.0075

Figures 3 and 4 demonstrate the Kalman filter identifying outliers. In Figure 3 the
filtered estimated states for the $/DM exchange rate are represented by the solid
line, the actual observed trades by circles, and trades occurring on the other
exchange rates by vertical li nes. The filtered states represent the estimate of the true
arbitrage value (not the bid or ask values). The effect of market friction’s has been
incorporated into the estimate R t , so filtered states are always within the actual bid

and ask values observed. The Kalman filter identifies an outlier and uses pure
prediction for the estimate of the $/DM rate at time 15.07.41 and does not follow
the spurious price movement. The mispricing is filtered and classified as an outlier
( rt = 465. ) by the robust algorithm presented here. Figure 3 also demonstrates how

new information occurring on any of the exchange rates is immediately
incorporated in the robust estimates of all the states. At time 15.07.27, the vertical
dotted line indicates the observation of a DM/£ trade, the estimate of the $/£ state is
instantly update to incorporate the affect of the rise in the DM/£.
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Figure 3: Identification of Market Mispricing.

Table 2: Tick Data (bold) and Estimated Rates (normal).

$/DM
Ticks

£/$
Ticks

£/Dm
Ticks

$/DM
Estimate

£/$
Estimate

£/DM
Estimate

SD (10-5)
Ln($/D)

SD (10-5)
Ln(£/$)

1.6601 2.4351 1.66018 1.46637 2.43444 4.33 8.38
1.66021 1.46624 2.43439 4.21 7.9

1.6604 1.66031 1.46627 2.43447 4.35 8.18
1.66030 1.46626 2.43443 4.21 7.71

1.4662 1.66031 1.46622 2.43439 4.65 8.38
1.66031 1.46624 2.43440 4.34 7.7
1.66031 1.46623 2.43440 4.57 7.9

1.6608 1.66055 1.46617 2.43464 4.6 8.4
1.66042 1.46619 2.43449 4.21 8.31

1.4665 2.4356 1.66047 1.46638 2.43488 4.65 8.38

Table 2 demonstrates the ability of the Kalman filter to deal with the erratic arrival
of tick data. Bold font exchange rates represent seconds when ticks are observed,
and normal font represents the Kalman filter estimates. When incomplete
observation vectors are observed the Kalman filter uses the multivariate auto-
regressive structure to estimate the unseen rates. In seconds where no observations
are observed the filter uses pure prediction to estimate the missing currency rates.
The last two columns in table 2 show the estimated prediction standard deviations



for the log of the states. Again, bold font indicates the seconds where ticks where
observed, and normal font indicates the recursive estimates of the Kalman filter.
The prediction error standard deviations grows steadily in periods where no ticks
are observed, and collapses to the one second state prediction error standard
deviation for the prediction based on new information (ticks).
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Figure 4: Identification of Market Mispricing.



6. Conclusion

We have shown the effectiveness of one filtering approach for identifying arbitrage
opportunities on currency tick data. The methodology is ideally suited to the poor
data quality of the financial markets (erratic arrival and additive outliers). The
Kalman filter produces rate estimates every second whether or not any ticks are
actually observed, this increases both the speed and eff iciency of identifying
arbitrage opportunities. It is straightforward to extend the above analysis to many
more exchange rates and cross rates, increasing the possibilit y of f inding
mispricing. In addition this methodology could be readily applied to all forms of
arbitrage which are described by similar sets of price relationships.
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