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Discrete-Time Finance Models
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Chapter 1

Basic Concepts and One Time-Period

Models

1.1 The Basic Setup

We consider a security market with the following conditions:

� There are only two consumption dates: the initial date t = 0 and the terminal date

t = T . Trading takes place at t = 0 only.

� There are �nite number of states of economy


 = f!1; !2; � � � ; !Jg

with the probability at state !j being P (!j):

Hence (
;F ; P ) consists of a probability space with the �-algebra being all the subsets
of 
.
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� There are N primitive securities. The n-th security has price pn at time 0 and

terminal payo�

dn =

0
BBBBBBBB@

dn(!1)

dn(!2)
...

dn(!J)

1
CCCCCCCCA

Thus, we have a price system

p = (p1; p2; � � � ; pN)0;

where 0 denotes the corresponding transpose, and the payo� matrix

D =

0
BBBBB@
d1(!1) � � � dN(!1)

...
...

d1(!J) � � � dN(!J)

1
CCCCCA

� Investors are price takers and have the homogeneous belief P = (P (!1); P (!2); � � � ; P (!J)).

� There is only one perishable consumption good.

1.2 Trading Strategies

If an investor possesses �n shares of security n, the portfolio of the securities of the investor

has the payo�
PN
n=1 �ndn at time T . Let e(0); e(T ) be the initial endowment and the

terminal endowment for the investor, respectively. Thus, the investor's consumptions are

c(0) = e(0)�
NX
n=1

�npn; (1.1)

c(T ) = e(T ) +
NX
n=1

�ndn: (1.2)

We call � = (�1; �2; � � � ; �N)0 a trading strategy. The set B(e; p) containing all consumption
processes c = (c(0); c(T )) over all � is called the budget set with respect to the endowment
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process e = (e(0); e(T )) and the price system p. Mathematically, a budget set is an a�ne

space of RJ+1.

A consumption process is said to be attainable if its terminal consumption can be

expressed as the payo� of a portfolio, i.e.

c(T ) =
NX
n=1

�ndn:

It is easy to see that a consumption process is attainable if and only if

Rank(D) = Rank(D; c(T )):

It is also easy to see that the terminal consumption of any attainable consumption process

is in the image of the matrixD, regarded as a linear map. Thus, every consumption process

is attainable if and only if Rank(D) = J , therefore, if and only if there are J independent

securities. In this case, we say the market is complete. Otherwise, we say the market is

incomplete. We will see later that if the market is complete, any consumption process can

be priced uniquely.

When the market is not complete, there is a need to create new securities in order

to complete the market. One approach is to create derivative securities on the existing

securities such as European-type options.

A European call option written on a security gives its holder the right( not obligation)

to buy the underlying security at a prespeci�ed price on a prespeci�ed date; whilst a

European put option written on a security gives its holder the right( not obligation) to

sell the underlying security at a prespeci�ed price on a prespeci�ed date. The prespeci�ed

price is called the strike price and the prespeci�ed date is called the expiration or maturity

date.

Given a security with terminal payo� �d = ( �d(!1); � � � ; �d(!J))0, the payo� of a European

call option with strike price K then is

maxf �d�K; 0g:
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Similarly, the payo� of a European put option with strike price K then is

maxfK � �d; 0g:

Example 1.1 Consider two securities with payo� d1 = (1; 2; 4)0; d2 = (2; 0; 1)0; respec-

tively. Since the number of the states is 3 and the number of securities is 2, the market

is not complete. Write a European call option on the �rst security with strike price 1.

Then its payo� is d3 = (0; 1; 3)0: These three securities are algebraically independent and

therefore complete the market.

We now consider no arbitrage strategies. A trading strategy � = (�1; �2; � � � ; �N )0 is said
to admit arbitrage if either

NX
n=1

�npn = 0; and
NX
n=1

�ndn � 0 (1.3)

with
PN
n=1 �ndn(!j) > 0 for some j,

or
NX
n=1

�npn < 0; and
NX
n=1

�ndn � 0 (1.4)

These conditions imply that with the zero endowment process, we will be able to obtain a

nonzero nonnegative consumption process.

1.3 Characterisation of No-Arbitrage Strategies

We are now looking for the necessary and su�cient condition under which the price system

does not admit arbitrage.

We �rst recall the Hahn-Banach Theorem which will be used to derive the condition.

Theorem 1.1(Hahn-Banach) Let A and B be two disjoint convex sets in a Hilbert

space H. Assume that there exist a 2 A and b 2 B such that d(A;B) = ka � bk; where
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d(A;B) is the distance between A and B de�ned by

d(A;B) = inffkx� yk; for any x 2 A and y 2 Bg:

Then, there exists a z 2 H and a scalar h such that for any x 2 A; x � z > h, and for any

y 2 B; y � z < h: See Appendix B for a proof.

It is easy to see that the price system admits arbitrage if and only if some consumption

process with zero endowment process lies in the setRJ+1
+ �f0g: Thus, no arbitrage condition

is equivalent to the condition that the sets B(0; p) and RJ+1
+ � f0g are separate. Suppose

this is the case. Let A = fx 2 RJ+1
+ ; x0 + � � � + xJ � 1

2
g. Then it can be shown (see

Appendix B) that there exist a 2 A and b 2 B(0; p) such that d(A;B(0; p)) = ka � bk:
By the Hahn-Banach Theorem, there is a z = (z0; z1; � � � ; zJ)0 and a scalar h such that for

any x 2 A; x0z > h, and for any y 2 B(0; p); y0z < h: Since B(0; p) is a linear space, y0z

is either 0 or unbounded from above on B(0; p). Thus, y0z = 0 for all y 2 B(0; p). This

means that

�0D0�z = z0�
0p

for any �, where �z = (z1; � � � ; zJ)0. That � is arbitrary implies

D0� = p; (1.5)

where � = ( z1
z0
; z2
z0
; � � � ; zJ

z0
)0: It is easy to see that h > 0: Let sj be the vector whose

(j + 1)-th component is 1 and others 0. Then sj 2 A and hence s0jz > 0, which implies

zj > 0; j = 0; 1; � � � ; J . Thus, � > 0:

Therefore, the price system does not admit arbitrage implies that there is a vector �,

all of whose components are positive, such that the equation (1.5) holds.

Conversely, if there is a positive vector � such that the equation (1.5) holds, there will

be no arbitrage. Otherwise, let �̂ be an arbitrage trading strategy. Multiplying �̂0 both

sides of the equation from the left gives an inequality, which is a contradiction.
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Summerizing the above arguments, we conclude that

Theorem 1.2 The price system does not admit arbitrage if and only if there is a positive

vector � such that

D0� = p: (1.6)

Let us now consider the case that one of these securities is a riskless bond, say the �rst

security. Denote r the rate of return of the bond. Thus, d1 = (1 + r)p1: The �rst equality

in equation (1.6) gives (1+ r)(�1+�2+ � � �+�J) = 1: Let Q(!j) = (1+ r)�j; j = 1; � � � ; J .
Then, Q = (Q(!1); � � � ; Q(!J))0 is a probability measure on (
;F) and the equation ((1.6)

becomes

D0Q = (1 + r)p: (1.7)

The nth scalar equation in (1.7) gives

JX
j=1

dn(!j)Q(!j) = (1 + r)pn:

Thus,

pn =
EQ(dn)

1 + r

and

EQ(Rn) =
1

pn

KX
j=1

dn(!j)Q(!j)� 1 = r;

where Rn =
dn
pn
� 1:

Hence, the price system does not admit arbitrage if and only if there is a probabil-

ity measure Q on (
;F) such that under this measure, the price of each security is the

discounted value of its expected payo� and all securities have the same expected rate of

return. The probability measure Q is often referred to as a risk-neutral probability mea-

sure. If the market is complete it uniquely exists under no arbitrage condition. However,

it the market is not complete, there are more than one risk-neutral probability measure.
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1.4 Valuation

We now denote the time-0 price of a consumption process c = (c(0); c(T )) by �(c). Then,

no arbitrage implies that for any attainable comsumption process with c(T ) =
PN
n=1 �ndn,

�(c) = c(0) +
NX
n=1

�npn: (1.8)

This formula itself is trivial but it represents a very important principle in pricing securities.

That is, if the payo� of a security can be hedged by forming a portfolio of the existing

securities, the price should be equal to the initial value of the portfolio. We will see later

on that the same principle is applied to many multi-period models.

On the other hand, since the price of each existing security can be written as the

discounted expected value of its payo� under a risk-neutral probability measure, we have

�(c) = c(0) +

PN
n=1 �nEQ(dn)

1 + r
= c(0) +

1

1 + r
EQf

NX
n=1

�ndng: (1.9)

This formula represents another important principle in pricing securities. It says that

the price of a security is the discounted expected value of its payo� under a risk-neutral

probability measure, discounted at the risk-free rate. This principle is often applied to

American type options as well as continuous time �nancial models.

It is easy to see that the price of an attainable consumption process is uniquely deter-

mined no matter which risk-neutral probability measure is used. Thus, when the market

is complete, every consumption process is priced uniquely.

Consider now the following securities: for each j = 1; 2; � � � ; J; the payo� of the j-th

security is

�j(!) =

8><
>:

1; ! = !j

0; otherwise
(1.10)

These securities are usually referred to as the Arrow-Debreu securities which pay one unit

at one state and nothing elsewhere. Their prices �j; j = 1; 2; � � � ; J , called the Arrow-

Debreu prices or the state prices, can be easily determined when the market is complete.
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For each j,

�j =
1

1 + r
EQ(�j) =

1

1 + r
Q(!j): (1.11)

In other words, the risk-neutral probability for each state is actually the accumulated value

of the corresponding state price at the riskfree rate.

Example 1.2 Consider an economy with only two states: the upstate and the downstate,

respectively. The probability of the upward state is q and the other is 1 � q. There are

two securities, one riskless bond with interest rate r and one stock with initial price S and

with return u at the upstate and return d at the downstate, u > d(Figure 1.1).

�
�
�
�
�
�*

H
H
H
H
H
Hj

1

u

d

Figure 1.1: Return of the risky security

The payo� matrix then is

D0 =

0
B@ 1 + r 1 + r

Su Sd

1
CA

The no arbitrage condition is equivalent to u > 1 + r > d: The risk-neutral probability

measure Q = (qu; qd)
0 satis�es

qu =
1 + r � d

u� d
; qd =

u� 1� r

u� d
:

For any given payo� C = (Cu; Cd)
0, which could be the payo� of a call or put option, we

have the price

�C = Cuqu + Cdqd =
(1 + r � d)Cu + (u� 1� r)Cd

u� d
: (1.12)
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On the other hand, suppose that a portfolio �S + B, where � is the number of shares of

the stock and B is the bond value, gives the same payo� as (Cu; Cd)
0. We then have

�Su+B(1 + r) = Cu (1.13)

�Sd+B(1 + r) = Cd (1.14)

Thus, � = Cu�Cd
S(u�d) ; B = uCd�dCu

(1+r)(u�d) : It is easy to verify that �C = �S + B: � is also the

derivative of the price of the security with payo� C with respect to the stock price and is

often called delta by practitioners.

We now consider pricing consumption processes in an incomplete market. It su�ces to

price only the respective terminal consumptions since the price of a consumption process

is simply the sum of its initial consumption and the price of its terminal consumption.

Let  be a price system on the terminal consumption space fc(T ) 2 RJg: Then,
 (�c(T )) = � (c(T )) and  (c1(T ) + c2(T )) =  (c1(T )) +  (c2(T )): In other words,  is

a linear functional on RJ . Furthermore, the fact that  is a price system and it does not

admit arbitrage implies that

 (�j) > 0; j = 1; � � � ; J; (1.15)

and
JX
j=1

 (�j) =
1

1 + r
: (1.16)

If we require the price system  to be consistent with the current price system p =

(p1; � � � ; pN)0, i.e.  (dn) = pn; n = 1; � � � ; N; we have
JX
j=1

dn(!j) (�j) = pn: (1.17)

De�ne Q (!j) = (1+r) (�j); j = 1; � � � ; J: These three conditions (1.15), (1.16) and (1.17)
give

D0Q = (1 + r)p: (1.18)
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Thus, they together are also su�cient conditions for a consistent no-arbitrage price system

for all consumption processes.

The correspondance  ! Q is an one-to-one correspondance since a linear functional is

uniquely determined by its values on a basis which is �j; j = 1; � � � ; J; in our case. Thus,

the number of price functionals is equal to the number of the risk-neutral probability

measures for the price system p = (p1; � � � ; pN)0. Moreover, if Rank(D) = N; there are

exactly J � N independent price functionals and any other price functional is a linear

combination of those.

From the equation (1.18), for any consistent no-arbitrage price system  , there is a

unique risk-neutral probability measure Q such that

 (c(T )) =
1

1 + r
EQ (c(T )): (1.19)

1.5 Risk Premiums

As in the preceding section, we let

Rn =
dn

pn
� 1

be the rate of return of security n. Denote the expected rate of return under the probability

measure P by

�n = EP (Rn) =
EP (dn)

pn
� 1:

This is the expected rate of return based on the investors homogeneous belief. Hence, the

di�erence �n � r between the expected rate of return and the riskfree rate of return is the

risk premium for security n. If we let z = P
Q
� 1; independent of the securities, then

�n � r = EP (Rn)� EQ(Rn) = EP [(1� P

Q
)Rn] = �CovP (z; Rn): (1.20)

For any given portfolio
PN
n=1 �npn with the rate of return

R =

PN
n=1 �ndnPN
n=1 �npn

� 1;
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and the expected rate of return � = EP (R);

�� r = EP (R)� EQ(R) = �CovP (z; R); (1.21)

since EQ(R) = r:

If z is attainable, i.e. z =
PN
n=1 �ndn, then,

z = (
NX
n=1

�npn)(1 +Rz);

where Rz is the rate of return of portfolio z. We have

EP (Rz)� r = �(
NX
n=1

�npn)VarP (Rz);

and

�� r = �(
NX
n=1

�npn)CovP (Rz; R):

Therefore,

�� r =
CovP (Rz; R)

VarP (Rz)
(EP (Rz)� r): (1.22)

The equation (1.22) is in the form of the well-known Capital Asset Pricing Model(CAPM).

z is referred to as the market portfolio and the quantity CovP (Rz;R)

VarP (Rz)
is referred to as the

market beta. Since the covariance operator and the variance operator are invariant under

parallel shifting R ! R + a; the above formula also holds when the rates of returns are

replaced by the returns per unit. The latter is used in the standard CAPM setting.
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Chapter 2

Discrete-Time Stochastic Processes

and Lattice Models

2.1 Discrete-Time Stochastic Processes

let (
;F ; P ) be a probability space. F then is the collection of all possible random events.

Thus, F represents all the information contained in this probability space.

Let F1 be another �-algebra de�ned on 
. If F1 is coarser than F , the probability

space (
;F1; P ) contains less information than (
;F ; P ) does.

Example 2.1 Let F1 = f�; 
g: F1 is the coarsest �-algebra which contains no information

at all.

Let F2 be the set of all subsets of 
. F2 is the �nest �-algebra which contains all the

information from the underlying space 
.

Let X be a random variable de�ned on (
;F ; P ). How much information would we be

able to obtain from X? Obviously, any random event we could observe through X will be

represented by the values of X on the random event. If two events give the same range

for X, we will be unable to distinguish them. Hence, all possible random events we can
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observe from X are in the �-algebra generated by events fX � xg; for all real numbers
x. We call the �-algebra generated by fX � xg; x 2 R; the Borel �-algebra with respect

to X and denote it as BX . Hence, BX represents all the information that can be obtained

from X.

Example 2.2 Suppose that X is a random variable which only takes a �nite number

of di�erent values u1; u2; � � � ; uJ . Let !j = fX = ujg; j = 1; 2; � � � ; J . Then BX is the

collection of all subsets of f!1; !2; � � � ; !Jg.
Consider now all the time-dependent random events in F . Let Ft be the collection of

all possible random events that may happen before or at time t. Then, (i) Ft is a �-algebra
coarser than F ; (ii) if t < s, Ft � Fs. Thus, fFt; t � 0g de�ne an information structure

on (
;F ; P ), with Ft representing the information up to time t. In probability theory, any

collection of �-algebras which satis�es (i) and (ii) is called a �ltration on (
;F ; P ) and the

quadruplet (
;F ;Ft; P ) is called a �ltered space.

At this moment let us consider a discrete-time setting: t = t0; t1; � � � : Without loss of

generality, assume t = 0; 1; 2; � � � : If we have a sequence of random variablesX(0); X(1); � � � ;
X(t); � � � ; such thatX(t) is a random variable on (
;Ft; P ), then the sequenceX(0); X(1); � � � ;
X(t); � � � ; is called an adapted discrete-time stochastic process on (
;F ;Ft; P ). In these

notes, we always assume that a stochastic process is adapted and simply call it a stochastic

process.

Given a stochastic process X(t); t = 0; 1; � � � ; we want to see how much information

we will be able to obtain from it. As we have mentioned above, BX(t) is the informa-

tion we can obtain from the random variable X(t). Thus, the information up to time t

from the stochastic process X(t); t = 0; 1; � � � ; is the �-algebra generated by the random

events in BX(0);BX(1); � � � ;BX(t): In other words, it is the smallest �-algebra containing

BX(0);BX(1); � � � ;BX(t): We denote this �-algebra as Bt. It is easy to see that

B0 � B1 � � � � � Bt � � � � � F
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Thus, Bt; t = 0; 1; � � � ; form a �ltration on (
;F ; P ), called the Borel or natural �ltration

with respect to X(t); t = 0; 1; � � � : This �ltration contains exact information obtained from
X(t); t = 0; 1; � � � ; and Bt is the exact information obtained from X(t); t = 0; 1; � � � ; up
to time t. Since X(t) is Ft-measurable, Bt � Ft. Hence the information contained in the

Borel �ltration is no more than that in the original �ltration Ft; t = 0; 1; � � � :
So far, we assume that we are given an information structure or �ltration Ft; t =

0; 1; � � � : Based on this information structure, we de�ne a stochastic process and its Borel

information structure. But very often, what we have is a sequence of random variables

X(t); t = 0; 1; � � � ; de�ned on (
;F ; P ) without having the information structure Ft; t =
0; 1; � � � : In other words, the sequence of random variables is the only source we can obtain

information from. In this case, we may directly de�ne Bt from the sequence X(t); t =

0; 1; � � � ; as above. It is easy to see that (
;F ;Bt; P ) is a �ltered space and X(t); t =

0; 1; � � � ; is a stochastic process on it.

Finally, we extend our discussion to vector-valued stochastic processes. We say a se-

quence of random vectors

(X1(t); X2(t); � � � ; XN(t)); t = 0; 1; � � � ;

is a stochastic process on (
;F ;Ft; P ) if for any n = 1; 2; � � � ; N , Xn(t); t = 0; 1; � � � ;
is a stochastic process on (
;F ;Ft; P ). The corresponding Borel �-algebra Bt is de-

�ned as the smallest �-algebra containing the Borel �-algebras generated by Xn(s); n =

1; 2; � � � ; N ; s = 0; 1; � � � ; t:

2.2 Random Walks

Random walks are one of the simplest discrete-time stochastic processes. Because they

are simple, intuitive and have other appealing features, they have been widely used in

modeling securities. In this section we show how a random walk is constructed and how it
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can be used to model securities.

Let Y1; Y2; � � � ; Yk; � � � be a sequence of independent, identically distributed(iid) Bernoulli
random variables de�ned on a probability space (
;F ; P ). First, let us assume that for a
given h > 0,

Yk =

8><
>:

h

�h
(2.1)

and

Pr(Yk = h) = Pr(Yk = �h) = 1

2
: (2.2)

We now construct a random walk over the time period [0; T ] as follows:

An object starts at a position marked 0. It moves once only at a time interval with

length � > 0. We choose � such that T is a multiple of � . During each time interval

the object either moves up h units with probability 1
2
or moves down h units with

probability 1
2
.

Let X(t) be the position of the object at time t. Then we have

X(t) = Y1 + Y2 + � � �+ Y�t; (2.3)

where t = �t� . Apparently, X(t) is binomially distributed. The Borel �-algebra Bt with
respect to this process is the collection of all the subsets of the set of all possible paths up

to time t. For example, B2 is the collection of all the subsets of

f(h; h); (h;�h); (�h; h); (�h;�h)g:

Let P (x; t) denote the probability that the object is at position x at time t, i.e. P (x; t) =

Pr(X(t) = x). Then when x is reached by moving up m times and moving down �t � m

times, we have

P (x; t) =

0
B@ �t

m

1
CA (

1

2
)
�t; x = (2m� �t)h; (2.4)
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m = 0; 1; � � � ; �t.
We can also easily compute its mean and variance.

E(X(t)) = �tE(Y1) = 0; (2.5)

V ar(X(t)) = �tV ar(Y1) = �th2 = t
h2

�
: (2.6)

Moreover, there is a recursive relation among P (x; t); t = 0; �; � � �. It follows from

P (x; t+ �) = Pr(X�t = x� Y�t+1) = E(Pr(X�t = x� y)jY�t+1 = y)

that

P (x; t+ �) = P (h; �)P (x� h; t) + P (�h; �)P (x+ h; t); (2.7)

with P (0; 0) = 1; P (x; 0) = 0; x 6= 0.

In the above case,

P (x; t+ �) =
1

2
[P (x� h; t) + P (x+ h; t)]: (2.8)

Next, we consider random walks with drift. As we have seen in the previous discussion

that the mean and variance of the random walk discussed are proportional to the time that

has passed. In other words, the average mean and variance over time remain constant.

Furthermore, the move at time t only depends on the position of the object at time t,

not the positions in the past, which is called the Markov property. Those properties are

appealing since many risky securities enjoy the same properties. However, in practice, the

average mean of a risky security is often nonzero. Thus there is a need to extend the

random walk we have considered.

Let us now design a random walk X(t); t = 0; �; 2�; : : : ; with a constant average mean

and a constant average variance, namely

E(X(t)) = t�; V ar(X(t)) = t�2: (2.9)

There are two approaches to achieve this goal.
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1. Adjust the probabilities of the up movement and the down movement. Let

Pr(Yk = h) = q; Pr(Yk = �h) = 1� q:

To satisfy equations in (2.9), we must have

h(2q � 1)

�
= �;

4h2q(1� q)

�
= �2;

which yields

h =
q
�2� + �2� 2; q =

1

2

h
1 +

s
1

1 + �2=�2�

i
: (2.10)

The corresponding recursive formula becomes

P (x; t+ �) = qP (x� h; t) + (1� q)P (x+ h; t): (2.11)

2. Adjust the magnitude of the up movement and the down movement separately.

Pr(Yk = h1) =
1

2
; Pr(Yk = �h2) = 1

2
:

Since

E(Yk) =
1

2
(h1 � h2); V ar(Yk) = (

h1 + h2

2
)2;

h1 � h2

2�
= �;

(h1 + h2)
2

4�
= �2:

This yields

h1 = �� + �
p
� ; h2 = ��� + �

p
� : (2.12)

The recursive formula is the same as (2.8).

We now illustrate how a random walk with drift can be used to model the price move-

ment of a risky security.

Consider a risky security for the time period [0; T ]. Assume that during the period

[0; T ]; there are �T trading dates, �t = 0; 1; � � � ; �T � 1, separated in regular intervals, i.e.

�t = t=�; where � is the time between two consecutive trading dates. At each time t, there
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are only two states of economy over the next time interval: the upstate and the downstate.

The probablities of the upstate and the downstate are q and 1�q, respectively. The return
of the security over the next time interval is u when the upstate is attained and d when

the downstate is attained. Suppose that S(t) is the price of the security at time t. De�ne

that Y�t = logS(t)� logS(t� �): Then Y�t is a Bernoulli random variable with

Pr(Y�t = log u) = q; Pr(Y�t = log d) = 1� q: (2.13)

Let X(t) = Y1 + Y2 + � � � + Y�t: Then X(t) is a random walk and the price S(t) can be

expressed as

S(t) = S(0)eX(t): (2.14)

If we further require that the logarithm of S(t) have constant average mean � and

constant average variance �2, our �rst approach gives

u = e

p
�2�+�2�2 ; d = e�

p
�2�+�2�2: (2.15)

and

q =
1

2

h
1 +

s
1

1 + �2=�2�

i
: (2.16)

The �rst-order approximation on � in (2.15) and (2.16) yields the well-known binomial

model of Cox, Ross and Rubinstein[5].

If we use the second approach, then q = 1
2
and

u = e��+�
p
� ; d = e����

p
� : (2.17)

This is similar to the model proposed by Hua He[14].

2.3 General Lattice Models

We now consider a security market with the following conditions:
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� There are T + 1 consumption dates separated in regular intervals. Without loss of

generality, we assume these dates are t = 0; 1; � � � ; T . Tradings take place only at

t = 0; 1; � � � ; T � 1.

� There are a �nite number of states of economy


 = f!1; !2; � � � ; !Jg

with the probability at state !j being P (!j):

Hence the �-algebra F of this probability space (
;F ; P ) is the collection of all the

subsets of 
.

� There is an information structure

fFt; t = 0; 1; � � � ; Tg (2.18)

on (
;F ; P ) such that F0 = f�; 
g is the trivial �-algebra and FT = F : Thus, at
the beginning of the period, there is no information and at the end of the period, all

information is available.

� There are N primitive securities with price process

p(t) = (p1(t); p2(t); � � � ; pN(t))0; t = 0; 1; � � � ; T;

where pn(t) is the price of security n at time t. The prices (p1(T ); p2(T ); � � � ; pN(T ))
at time T is actually the terminal payo�s of those securities and sometime we denote

them by payo� matrix

D =

0
BBBBB@
d1(!1) � � � dN(!1)

...
...

d1(!J) � � � dN(!J)

1
CCCCCA
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Since at time t the securities are priced based on the information available up to time

t, the price process

(p(0); p(1); � � � ; p(T ))

is a stochastic process on (
;F ;Ft; P ).

We further assume that one of these securities, say, the �rst security, is a riskfree

bond with constant interest rate r over each time interval. Thus, p1(t) = (1+r)tp(0):

� Investors are price takers. They share the same information represented by fFt; t =

0; 1; � � � ; Tg and have a homogeneous belief P .

� There is only one perishable consumption good.

A trading strategy �(t) = (�1(t); � � � ; �N(t))0 at the time t is such that after trading the

investor owns �n(t) shares of security n at time t. A trading strategy for the period [0; T ]

is then

�(0); �(1); � � � ; �(T � 1):

Since �(t) is determined at time t, it is a random vector on (
;Ft; P ). Thus, �(t); t =

0; 1; � � � ; T � 1 is a stochastic process on (
;F ;Ft; P ).
Let e(t) be an endowment at time t which is a random variable on (
;Ft; P ). Hence,

the endowment process e = (e(0); e(1); � � � ; e(T )) is a stochastic process on (
;F ;Ft; P ).
A stochastic process c = (c(0); c(1); � � � ; c(T )) is called a consumption process with

respect to the endowment process e and the price process p if there is a trading strategy

�(t); t = �1; 0; 1; � � � ; T such that

c(t) = e(t) +
NX
n=1

(�n(t� 1)� �n(t))pn(t); (2.19)

for t = 0; 1; 2; � � � ; T , where �n(�1) = 0; �n(T ) = 0: Similar to the one time-period case,

a consumption process c = (c(0); c(1); � � � ; c(T )) is attainable if there is a trading strategy
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�(t) such that

c(t) =
NX
n=1

(�n(t� 1)� �n(t))pn(t); (2.20)

for t = 1; 2; � � � ; T . A market is complete if every consumption process is attainable.

A self-�nancing trading strategy is a trading strategy such that

NX
n=1

(�n(t� 1)� �n(t))pn(t) = 0; (2.21)

for t = 1; 2; � � � ; T � 1. In other words, under a self-�nancing trading strategy an investor

consumes only his/her endowment, no more and no less, on any intermediate trading date.

It is easy to see that a consumption process with no intermediate consumptions is attainable

if and only if the corresponding trading strategy is self-�nancing.

In this section we examine the relation of prices between any two consecutive trading

dates.

Let p(t); t = 0; 1; � � � ; T be the price process and Ft; t = 0; 1; � � � ; T be the infor-

mation structure we de�ned in Section 2.3. As we have assumed that 
 consists of only

a �nite number of states, it can be shown that each Ft is generated by a �nite partition

fF 1
t ; F

2
t ; � � � ; Fmt

t g, i.e. [mti=1F i
t = 
; F i

t \ F j
t = �; i 6= j; and each F i

t is indivisible in Ft.
To see this, given any ! 2 
, let Ft(!) be the smallest set in Ft containing !. All such

sets then either coincide or completely separate. Thus all di�erent Ft(!); ! 2 
, form a

�nite partition of 
. From the indivisibility of each F i
t , every random variable de�ned on

(
;Ft; P ) is constant on F i
t .

Let now the partition fF 1
t�1; F

2
t�1; � � � ; Fmt�1

t�1 g generate Ft�1. It follows from Ft�1 � Ft
that each F

j
t�1 is the union of a �nite number of F i

t 's. Without loss of generality, we may

number ! is such a way that, for each t, there are

1 � i1 < i2 < � � � < imt�1�1 < mt

such that (Figure 2.1)

F 1
t�1 = [i1i=1F i

t ; F
2
t�1 = [i2i=i1+1F i

t ; � � � ; Fmt�1

t�1 = [mti=imt�1�1+1
F i
t : (2.22)
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Figure 2.1: Tree structure of a lattice model

Thus, ij � ij�1 is the number of sets in Ft split from F
j
t�1. Summarizing the discussion

above, we see that the model we consider is of a lattice or tree structure. Under this

structure,

F
j
t�1; j = 1; 2; � � � ; mt�1

are nodes at time t� 1. The set F i
t ; F

i
t � F

j
t�1, is a branch coming from F

j
t�1:

Recall that p(t� 1) is constant on each F
j
t�1 and p(t) is constant on each F i

t . We may

denote these constant vectors as p(F
j
t�1) and p(F

i
t ); respectively.

For each F
j
t�1, we now construct a one time-period model as follows: p(F

j
t�1) is its price

system and

D(F
j
t�1) =

0
BBBBB@
p1(F

ij�1+1
t ) � � � pN(F

ij�1+1
t )

...
...

p1(F
ij
t ) � � � pN(F

ij
t )

1
CCCCCA (2.23)
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is its payo� matrix.

Thus, the multiple time-period lattice model is decomposed into a collection of the

associated one time-period models in which the payo�s of a price system are the prices on

the following trading date.
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Chapter 3

No-Arbitrage Valuation

3.1 No-Arbitrage Condition

Similar to the de�nition of arbitrage for one time-period models, we say a price pro-

cess p(t); t = 0; 1; � � � ; T admits arbitrage if there exists a trading strategy �(t); t =

0; 1; � � � ; T � 1 such that the associated consumption process

c(t) =
NX
n=1

(�n(t� 1)� �n(t))pn(t); (3.1)

for t = 0; 1; 2; � � � ; T , is a nonzero, nonnegative consumption process.

We will show below that a price process does not admit arbitrage if and only if every

associated one time-period model de�ned in Section 2.4 does not admit arbitrage.

Suppose that there is an associated one time-period model which admits arbitrage, say

the one with price system p(F i
t ) and payo� matrix D(F i

t ). Thus, there is a trading strategy

� = (�1; �2; � � � ; �N )0 such that

(��0p(F i
t ); �

0D0(F i
t ))

is nonzero and nonnegative. Let �(t) = �; when the state F i
t prevails; otherwise, �(t) = 0.

Then �(t); t = 0; 1; � � � ; T � 1 is an arbitrage strategy.
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Conversely, Suppose that none of the associated one period models admits arbitrage

but the price process p(t); t = 0; 1; � � � ; T admits arbitrage. Let �(t); t = 0; 1; � � � ; T � 1

be an arbitrage strategy. Thus,

c(t) =
NX
n=1

(�n(t� 1)� �n(t))pn(t) � 0;

for t = 0; 1; � � � ; T and c(s) > 0 at some node F i
s.

Starting from the last time interval [T � 1; T ], that

c(T ) =
NX
n=1

�n(T � 1)pn(T ) � 0

and every one period model does not admit arbitrage implies

NX
n=1

�n(T � 1)pn(T � 1) � 0:

It follows from c(T � 1) � 0 that

NX
n=1

�n(T � 2)pn(T � 1) � 0:

Continuing backwards over time in this manner, we have

NX
n=1

�n(t)pn(t) � 0;

for t = s; s+ 1; � � � ; T � 1:

Since c(s) > 0 at node F i
s ,
PN
n=1 �n(s� 1)pn(s) > 0 at node F i

s . The same argument as

above can show that for t = 0; 1; � � � ; s� 1, at at least one node at time t

NX
n=1

�n(t)pn(t) > 0:

In particular, �c(0) = PN
n=1 �n(0)pn(0) > 0; which is contradictory to c(0) � 0:

Hence, to verify whether a multi-period model admits arbitrage, it is su�cient to verify

whether its associated one period models admit arbitrage, which can easily be done as we

have shown in Chapter One.
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3.2 Risk-Neutral Probability Measures

We now always assume that the price process p(t); t = 0; 1; � � � ; T does not admit arbitrage.

We will show in this section that under the no-arbitrage assumption, there is a probability

measure on (
;F) such that the present value processes are martingales with respect to

the information structure Ft.
Consider the one period model at each node F

j
t�1. From Theorem 1.2, there is a risk-

neutral probability measure, denoted as �Q(F
j
t�1) such that

D0(F j
t�1) �Q(F

j
t�1) = (1 + r)p(F

j
t�1): (3.2)

De�ne

Q(t; !) = �Q(F
j
t�1)(F

i
t ); if ! 2 F i

t � F
j
t�1:

Then, Q(t) is measurable on (
;Ft) and Q(t) is a probability measure on each F
j
t�1. Let

Q =
TY
t=1

Q(t): (3.3)

We �rst show that Q is a probability measure on (
;F). The positivity of Q is obvious.

Let

1 � i1 < i2 < � � � < imT�1�1 < J

be the partition for the last time interval. Then

JX
j=1

Q(!j) =
JX
j=1

TY
t=1

Q(t; !j)

=

mT�1X
k=1

ikX
j=ik�1+1

(
T�1Y
t=1

Q(t; !j))Q(T; !j)

=

mT�1X
k=1

(
T�1Y
t=1

Q(t; F k
T�1))

ikX
j=ik�1+1

Q(T; !j)

=

mT�1X
k=1

T�1Y
t=1

Q(t; F k
T�1); (3.4)
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where Q(s; F i
t ) = Q(s; !) for ! 2 F i

t and s � t. It is well de�ned since Q(s); s = 1; � � � ; t
all are Ft-measurable. Proceeding in this manner yields

JX
j=1

Q(!j) = � � � =
m0X
k=1

Q(1; F k
1 ) = 1: (3.5)

Furthermore, for any F i
t 2 Ft;

Q(F i
t ) =

X
!j2F it

Q(!j) =
X
!j2F it

TY
s=1

Q(s; !j)

=
tY

s=1

Q(s; F i
t )

X
!j2F it

TY
s=t+1

Q(s; !j): (3.6)

The second factor in (3.6) is equal to one , which can be derived exactly as was done in

(3.4) and (3.5). Thus,

Q(F i
t ) =

tY
s=1

Q(s; F i
t ): (3.7)

For any pair F i
t � F

j
t�1; the conditional probability

Q(F i
t jF j

t�1) =

Qt
s=1Q(s; F

i
t )Qt�1

s=1Q(s; F
j
t�1)

= Q(t; F i
t ) =

�Q(F
j
t�1)(F

i
t ); (3.8)

since Q(s; F i
t ) = Q(s; F

j
t�1) for s = 1; � � � ; t� 1.

We now introduce the present value process

an(t) = (1 + r)�tpn(t); (3.9)

for security n; n = 1; � � � ; N . In fact, an(t) is the present value at time 0, of the price of

security n at time t, discounted at the riskfree rate r.

Recall that a stochastic process X(t) on (
;F ;Ft; P ) is called a martingale if

E(X(t) jFt�1) = X(t� 1): (3.10)

We now show that an(t) is a martingale under the probabilty measure Q.
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For any F
j
t�1 2 Ft�1,

EQ(an(t) jF j
t�1) = (1 + r)�tEQ(pn(t) jF j

t�1)

= (1 + r)�t
X

F it�F
j
t�1

pn(F
i
t )Q(F

i
t jF j

t�1)

= (1 + r)�t
X

F it�F
j
t�1

pn(F
i
t )
�Q(F

j
t�1)(F

i
t )

by (3:2)

= (1 + r)�t+1pn(F
j
t�1) = an(t� 1; F

j
t�1):

Therefore,

EQ(an(t) jFt�1) = an(t� 1): (3.11)

Moreover, for any s < t,

EQ(an(t) jFs) = an(s): (3.12)

This can be easily derived from E(E(XjF1)jF2) = E(XjF2); where F1 is �ner than F2.

Hence, if the price process p(t); t = 0; 1; � � � ; T does not admit arbitrage, there is a

probability measure Q such that the present value processes an(t); t = 0; 1; � � � ; T ; n =

1; � � � ; N are martingales on the �ltered space (
;F ;Ft; Q). It is proved below that this is

also true conversely.

Theorem 3.1 A price process p(t); t = 0; 1; � � � ; T does not admit arbitrage if and

only if there is a probability measure Q such that the present value processes an(t); t =

0; 1; � � � ; T ; n = 1; � � � ; N are martingales on the �ltered space (
;F ;Ft; Q).

Proof: It is enough to prove the su�cient part.

Let Q be such a probability measure. For each node F
j
t�1, de�ne a probability measure

�Q(F
j
t�1) for the associated one period model as follows: for each F i

t � F
j
t�1,

�Q(F
j
t�1)(F

i
t ) = Q(F i

t jF j
t�1):
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From

EQ(an(t) jFt�1) = an(t� 1);

we have

D0(F j
t�1) �Q(F

j
t�1) = (1 + r)p(F

j
t�1):

Thus, none of the one period models admits arbitrage, neither does the multi-period model.

The probability measure Q under which the present value processes are martingales is

called the risk-neutral probability measure.

So far, we have assumed that the riskfree rate is a constant and nonrandom throughtout

the entire period [0; T ]:More realistically, the interest rate should be assumed to depend on

the information available up to a current point in time. Mathematically, this is equivalent

to assuming that the interest rate process rt; t = 1; � � � ; T; is a predictable process(a

stochastic process X(t) is said to be predictable if X(t + 1) is a stochastic process). Let

us denote the discount function at time t as

R�1
t =

1

(1 + r1)(1 + r2) � � � (1 + rt)
: (3.13)

Then the present value processes are

an(t) = R�1
t pn(t); t = 1; � � � ; T; (3.14)

for n = 1; � � � ; N . All the results for multi-period models we have discussed and in the

following sections can be extended to hold in the case that the discount function is de�ned

in (3.13).

3.3 Valuation

In this section, we assume that the market is complete. The discussion of pricing in an

incomplete market will be similar to that in Section 1.4.
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Since any consumption process c = (c(t); t = 0; 1; 2; � � � ; T ), is attainable, we have a

trading strategy �(t); t = 0; 1; 2; � � � ; T � 1 such that

c(t) =
NX
n=1

(�n(t� 1)� �n(t))pn(t); (3.15)

for t = 1; 2; � � � ; T . No-arbitrage implies that the price of this consumption process is

�(c) = c(0) +
NX
n=1

�n(0)pn(0) (3.16)

This formula suggests that the consumption process c = (c(t); t = 0; 1; 2; � � � ; T ) could
be achieved by rebalancing a portfolio with initial value �(c) at each trading date: at time

0, consume c(0) and form a portfolio with �n(0) shares of security n; at time 1, adjust the

portfolio so that we own �n(1) shares of security n and consume the rest which is exact

amount of c(1), and so on. This process is often called replication or dynamic hedging.

When a security has no intermediate consumptions, which is the case for many derivative

securities, the price of this security is the value of a portfolio which replicates the terminal

payo� of the security through a self-�nancing trading strategy.

Another approach is to use the risk-neutral probability measure. Similar to the one

period case, the price of a consumption process can be expressed as the expected present

value under the risk-neutral probability measure.

Let

a = c(0) +
TX
t=1

c(t)

(1 + r)t
: (3.17)

a is the present value of the consumption process.

EQ(a) = c(0) +
TX
t=1

EQ(c(t))

(1 + r)t

= c(0) +
TX
t=1

NX
n=1

EQ(�n(t� 1)pn(t))� EQ(�n(t)pn(t))

(1 + r)t
:

Since

EQ(�n(t� 1)pn(t)) = EQ

h
EQ(�n(t� 1)pn(t) jFt�1)

i
= (1 + r)EQ(�n(t� 1)pn(t� 1));
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EQ(a) = c(0) +
TX
t=1

NX
n=1

hEQ(�n(t� 1)pn(t� 1))

(1 + r)t�1
� EQ(�n(t+ 1)pn(t))

(1 + r)t

i

= c(0) +
NX
n=1

�n(1)pn(0) = �(c): (3.18)

In particular, if we let

�F it (!) =

8><
>:

1; ! 2 F i
t

0; otherwise
(3.19)

be the Arrow-Debreu security which pays one unit when the state F i
t prevails and zero

otherwise. Then, the corresponding price is

�(�F it ) =
EQ(�F it )

(1 + r)t
=

Q(F i
t )

(1 + r)t
: (3.20)

Although both approaches produce the same price for a �nancial security under the

ideal assumptions we have used, which should be used in practice depends on the type

of the security. In many cases, the risk-neutral valuation approach is simpler than the

dynamic hedging approach, especially when a security is a European type derivative. This

can be seen in the next section where a European call is considered. However, the dynamic

hedging approach o�ers more exiblities. it allows us not only to deal with non-European

derivatives but also to deal with the valuation problem for models under more realistic

assumptions. Many features such as dividend payments, transaction costs can be dealt with

easily. The valuation of American derivatives is illustrated in the next section. Applications

of the dynamic hedging approach to models which incorporates transaction costs can be

found in [4] and [3].

3.4 Binomial Models of Option Pricing

Consider now a market with only two securities: a riskless bond and a stock. Both are

traded over the period [0; T ]. There are �T trading dates, �t = 0; 1; � � � ; �T � 1, separated in
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regular intervals. The stock price S(t) follows the random walk model described in Section

2.2. Hence,

PrfS(t) = uS(t� �) jS(t� �)g = q;

PrfS(t) = dS(t� �) jS(t� �)g = 1� q; 0 < q < 1; (3.21)

for t = �; � � � ; T: The interest rate of the riskless bond at each trading period is r.

It is easy to see that the associated one period models are identical with the one we

presents in Example 1.2. Thus, the market is complete and the stock price does not admit

arbitrage if and only if d < 1+ r < u: Moreover, under the unique risk-neutral probability

measure, the conditional probability measure at time t; conditional on t� � is

qu =
1 + r � d

u� d
; qd = 1� qu =

u� 1� r

u� d
: (3.22)

Therefore, the stock price S(t) at time t under the risk-neutral probability measure is

binomially distributed and

Q(fS(t) = S(0)usd
�t�sg) =

0
B@ �t

s

1
CA qsu(1� qu)

�t�s; s = 0; 1; � � � ; �t; (3.23)

for t = �; � � � ; T:
We now try to price a European call option written on the stock with the strike price

K, expired at time T . Let

C = max(S(T )�K; 0)

be the payo� of the call. Then by the result obtained in Section 3.3, the price of the call is

�c = (1 + r)�
�TEQ(C)

= (1 + r)�
�T

�TX
s=0

max(S(0)usd
�T�s �K; 0)

0
B@ �T

s

1
CA qsu(1� qu)

�T�s

= (1 + r)�
�T

X
s� log(K=S(0))� �T log d

log(u=d)

(S(0)usd
�T�s �K)

0
B@ �T

s

1
CA qsu(1� qu)

�T�s
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= (1 + r)�
�TS(0)

X
s� log(K=S(0))� �T log d

log(u=d)

0
B@ �T

s

1
CAusd �T�sqsu(1� qu)

�T�s

� (1 + r)�
�TK

X
s� log(K=S(0))� �T log d

log(u=d)

0
B@ �T

s

1
CA qsu(1� qu)

�T�s:

Let

�qu =
uqu

1 + r
: (3.24)

Then, from (3.22)

�qd = (1� �qu) =
dqd

1 + r
: (3.25)

The price of the call can then be written as

�c = S(0)
X

s� log(K=S(0))� �T log d

log(u=d)

0
B@ �T

s

1
CA �qsu(1� �qu)

�T�s

� (1 + r)�
�TK

X
s� log(K=S(0))� �T log d

log(u=d)

0
B@ �T

s

1
CA qsu(1� qu)

�T�s

= S(0)
X

s� �T log u+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA �qsd(1� �qd)

�T�s

� (1 + r)�
�TK

X
s� �T log u+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA qsd(1� qd)

�T�s: (3.26)

Denote �d =
�T log u+log(S(0)=K)

log(u=d)
and B(x; n; p) the distribution function of the binomial

distribution with parameters n and p, i.e.

B(x; n; p) =
X
s�x

0
B@ n

s

1
CA ps(1� p)n�s: (3.27)

We have

�c = S(0)B( �d; �T ; �qd)� (1 + r)�
�TKB( �d; �T ; qd): (3.28)
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This formula is the well known option pricing formula of Ross, Cox and Rubinstein[5].

The delta is B( �d; �T ; �qd). Other Greeks can be calculated easily. It also reveals that to

replicate a European call, the strategy is to form a portfolio long in stock and short in bond.

Note that the �rst summation in the formula is the distribution function of the binomial

distribution with parameter �qd and the second summation is the distribution function of

the binomial distribution with parameter qd. Hence both can be evaluated quite easily.

To value a European put option, we can either use the above approach or use the

put-call parity.

Let

P = max(K � S(T ); 0)

be the payo� of a European put option with the strike price K, expired at time T . It is

easy to see that

max(S(T )�K; 0)�max(K � S(T ); 0) = S(T )�K:

Hence if �p is the price of the put, we have

�c � �p = (1 + r)�
�T [EQ(S(T ))�K] = S(0)� (1 + r)�

�TK: (3.29)

This identity is called the put-call parity.

We now consider the valuation problem for American options. The payo� structure of

an American option is similar to its European counterpart. However, an American option

can be exercised at anytime before its expiration date. For example, an American call

option and an American put option written on a stock with the price S(t) at time t for

the period [0; T ] can be exercised before time T . Their payo�s, if exercised at t, will be

max(S(t)�K; 0) and max(K � S(t); 0), respectively.

The valuation problem for American options is generally much more di�cult than Eu-

ropean options. Unlike European options, There are no closed form solutions for American

options. This is because the buyer of an American option holds the right to exercise at
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anytime and the problem becomes how to �nd the optimal exercise time at which the

expected discounted payo� for the buyer is maximized. Since a decision on whether to ex-

ercise should be based on the information up to date, an exercise time is a random variable

and is described as a stopping time in the probabilistic context. A stopping time T on a

�ltered probabilty space (
;F ;Ft; P ) is a random variable such that for each t, the event

fT � tg belongs to Ft.
Let g(S(t); t) be the payo� of an American option when it is exercised at time t. If the

decision to exercise this option is based on a stopping time T , the valuation formula (3.18)
gives that the price of this option is

EQf(1 + r)�T g(S(T ); T )g: (3.30)

Recalling that the buyer of an American option always wants to maximize the expected

discounted payo�, the value of this option then is

�g = max
T

EQf(1 + r)�T g(S(T ); T )g: (3.31)

Maximization is taken over all stopping times over the period [0; T ]. It is easy to see that

there is no put-call parity for American options since the optimal exercise time for a call

is di�erent from the optimal exercise time for the corresponding put.

It is impractical to examine each of these stopping times in (3.31) in order to �nd

the optimal exercise time and the value for the option. However, under the discrete-time

framework we have disccussed in this chapter we will be able to �nd the optimal exercise

time and the option value through a backward recursive algorithm.

We begin with the last time interval. For t = T , de�ne a random variable v(T�1;FT�1)
on (
;FT�1) as

v(T � 1;FT�1) = max f(1 + r)�1EQfg(S(T ); T )jFT�1g; g(S(T � 1); T � 1)g: (3.32)

For t = 1; � � � ; T � 1, de�ne a random variable v(t� 1;Ft�1) on (
;Ft�1) as

v(t� 1;Ft�1) = max f(1 + r)�1EQfv(t;Ft)jFt�1g; g(S(t� 1); t� 1)g: (3.33)
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The value v(0) then is the price of this American option at time 0. Furthermore, v(t;Ft)
is the value of the option at time t. In other words, the value of an American option is

calculated as the maximum of the expected discounted value of the same option at next

trading date and the current payo�. The optimal exercise time of this option then is

Tg = minft; g(S(t); t) > v(t;Ft)g; (3.34)

where if the set is empty, we de�ne Tg = T .

The rationale behind this algorithm is the following:

We choose T0 = T as an initial exercise time which of course is not optimal. If at a

node at time T � 1, say F i
T�1;

g(S(T � 1); T � 1) > (1 + r)�1EQfg(S(T ); T )jF i
T�1g;

we de�ne

T1 =
8><
>:
T � 1; at F i

T�1

T0; otherwise:

Thus T1 will yield a higher expected discounted payo� than T0. The same argument applies
to intermediate trading dates. After we exhuast all the nodes we obtain the optimal exercise

time and the value of the option.

The algorithm we discussed above is quite exible. It can apply to other types of

options. For instance, we may use it to evaluate Bermudan options which allow their

buyer to exercise during a given period of time before expiration of the options. In that

case, we may use the algorithm for the exercise period and use an option pricing formula

for European options for the no exercise period.

Finally, we discuss the valuation of an American call option. We will see in the following

that there will never be an early exercise for an American call. Thus, the value of an

American call is the same as that of the corresponding European call. To see this it is

su�cient to show

maxfS(t� 1)�K; 0g � (1 + r)�1EQfmaxfS(t)�K; 0gjS(t� 1)g: (3.35)
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The inequality (3.35) is in fact a direct application of the Jensen's inequality which states

that for any random variable X and for any convex function h(x), h(E(X)) � E(h(X)).

Now choose h(S) = max(S �K; 0). We have

(1 + r)�1EQfmaxfS(t)�K; 0gjS(t� 1)g
� (1 + r)�1maxfEQfS(t)jS(t� 1)g �K; 0g
= maxfS(t� 1)� K

1 + r
; 0g � maxfS(t� 1)�K; 0g:

3.5 Binomial Interest Rate Models

Consider a bond market in which default-free bonds are traded during the period [0; T ].

The trading times are separated in regular intervals(trading periods) of length � as we

described in Section 2.2. Denoting �t = t=�; then,

t = �t�; �t = 0; 1; � � � ; �T

are the trading times.

Bonds are uniquely determined by their time of maturity. Thus, at time t there are

�T � �t di�erent bonds: ones with the maturity times t = t + �; � � � ; T . Let p(t; s) be the

price of a bond at time t which pays one unit matured at time s.

De�ne

f(t; s) = �1

�
log

hp(t; s+ �)

p(t; s)

i
: (3.36)

f(t; s) is called the forward rate at time t for the time period [s; s+ � ]. It relates the bond

with maturity at s to the bond with maturity at s+ � , because

p(t; s+ �) = p(t; s)e��f(t;s); (3.37)

for t = 0; �; 2�; � � � ; T ; s = t; � � � ; T .
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The formula (3.37) yields

p(t; s) = e��
P�s�1

k=�t
f(t;k�): (3.38)

Hence the bond price structure is uniquely determined by this forward rate structure. To

model bond prices over a certain period, it is su�cient to model the respective forward

rates over the period.

We now de�ne

�(t; s) = � 1

s� t
log p(t; s): (3.39)

Then,

p(t; s) = e�(s�t)�(t;s): (3.40)

�(t; s) is the implied constant force of interest or the continuously compounded interest

rate over the period [t; s]. For each t, the sequence

�(t; s); s = t+ �; � � � ; T

is called the yield curve at time t. The yield curve at time 0 is simply called the yield curve.

The structure of the yield curves is called the term structure of interest rates. Comparing

(3.38) with (3.40), we have

�(t; s) =
1

�s� �t

�s�1X
k=�t

f(t; k�):

The short term rate rt at time t is

(1 + rt)
�1 = e���(t;t+�) = p(t; t + �):

Thus the discount function de�ned in (3.13) is

R�1
t = p(0; �)p(�; 2�) � � �p(t� �; t)

= e��
P�t�1

k=0
f(k�;k�): (3.41)

It is obviously a predictable process.

42



The present value process for the s-maturity bond is

a(t; s) = R�1
t p(t; s)

= e�� [
P�t�1

k=0
f(k�;k�)+

P�s�1

k=�t
f(t;k�)]: (3.42)

We now try to model the forward rates. As we have pointed out that the bond price

structure is uniquely determined by the forward rate structure, the simpliest way to model

the forward rates is to use random walks.

Let

f(0; s); f(�; s); � � � ; f(s; s)

be the forward rate process. We assume that it follows a random walk:

f(t; s) = f(t� �; s) + Y (t; s); (3.43)

where Y (t; s) is a Bernoulli random variable with

PrfY (t; s) = u(t; s)g = q(t);

PrfY (t; s) = d(t; s)g = 1� q(t); 0 < q(t) < 1: (3.44)

The choice of u(t; s); d(t; s) and q(t); t = 0; �; � � � ; T ; s = t; � � � ; T must be such that the

bonds are priced to avoid arbitrage. Equivalently, under our choice there is a risk-neutral

probability measure Q such that the present value processes for all bonds are martingales

under Q.

Now,

a(t; s) = e�� [
P�t�1

k=0
f(k�;k�)+

P�s�1

k=�t
f(t;k�)]

= e�� [
P�t�1

k=0
f(k�;k�)+

P�s�1

k=�t
f(t��;k�)+

P�s�1

k=�t
Y (t;k�)]

= e
�� [
P�t�2

k=0
f(k�;k�)+

P�s�1

k=�t�1
f(t��;k�)]

e��
P�s�1

k=�t
Y (t;k�)

= a(t� �; s)e��
P�s�1

k=�t
Y (t;k�): (3.45)
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Thus, a(t; s); t = 0; �; � � � ; s; s = �; � � � ; T are martingales under Q if and only if

EQ(e
��
P�s�1

k=�t
Y (t;k�) jBt�� ) = 1: (3.46)

That is equivalent to the existence of Q(t) such that 0 < Q(t) < 1, t = �; � � � ; T � �; and

Q(t)e��
P�s�1

k=�t
u(t;k�) + (1�Q(t))e��

P�s�1

k=�t
d(t;k�) = 1; (3.47)

for all �s = �t+ 1; � � � ; �T :
In this model at each trading period there are only two states, which implies that

there is one factor to determine the price movement. Hence, it is a one-factor model.

Even so, this model is not easy to implement. One problem is the determination of its

parameters since they are time dependent. Another problem is that the number of the

states increases exponentially as the number of trading times increases. This sometime

makes the implementation of the model very di�cult in practice.

To simplify this binomial model, assume that

1. q(t) = q, independent of t. Consequently, we look for the risk-neutral probability

measure Q such that Q(t) = �Q is also independent of t;

2. The average variance of the forward rate process is constant:

V ar
h
f(t; s)� f(t� �; s) jBt��

i
= �2�: (3.48)

The second assumption is equivalent to

V ar(Y (t; s)) = �2�:

Since

V ar(Y (t; s)) =
h
(u(t; s)� d(t; s))(1� q)

i2
q +

h
(u(t; s)� d(t; s))q

i2
(1� q)

=
h
(u(t; s)� d(t; s))

i2
q(1� q) = �2�;
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u(t; s) = d(t; s) + �

s
�

q(1� q)
:

Denote

 = �

s
�

q(1� q)
:

From (3.47), we have

�Qe��
P�s�1

k=�t
u(t;k�) + (1� �Q)e(s�t) e��

P�s�1

k=�t
u(t;k�) = 1;

for all �s = �t+ 1; � � � ; �T : Taking the ratio of

e��
P�s�1

k=�t
u(t;k�)

h
�Q + (1� �Q)e(s�t) 

i
= 1

to

e��
P�s

k=�t
u(t;k�)

h
�Q+ (1� �Q)e(s�t+�) 

i
= 1

yields

u(t; s) =
1

�
log

�Q+ (1� �Q)e(s�t+�) 

�Q + (1� �Q)e(s�t) 
;

d(t; s) =
1

�
log

�Qe� + (1� �Q)e(s�t) 

�Q+ (1� �Q)e(s�t) 
: (3.49)

The model we just obtained is the well known Ho-Lee model[16]. This model has a

very appealing feature: recombining. In a recombining binomial model, the security prices

are determined only by the number of upstates and the number of downstates that have

occured in the past and are independent of the order of those states occured. If a model is

recombining, the number of states increases linearly instead of exponentially. That enables

us to use a computer with limited memory and to greatly reduce computing time when

implementing it even with a large number of trading periods.

We now verify that the Ho-Lee model is recombining.

Let us consider the case with two trading periods. The case with more trading periods

can be discussed in a similar manner. Since

p(t; s) = e��
P�s�1

k=�t
f(t;k�);

45



we have

p(t+ �; s) = p(t; s)e
�f(t;t)��

P�s�1

k=�t+1
Y (t+�;k�)

= p(t� �; s)e�f(t��;t��)+�f(t;t)��
P�s�1

k=�t
Y (t;k�)��

P�s�1

k=�t+1
Y (t+�;k�)

= p(t� �; s)e
�f(t��;t��)+�f(t��;t)+�Y (t;t)��

P�s�1

k=�t
Y (t;k�)��

P�s�1

k=�t+1
Y (t+�;k�)

:

Suppose that at time t� � , the s-maturity bond is p(t� �; s). The price p(t+ �; s) can be

attained in two ways: (i) the upstate prevails at time t and then the downstate prevails at

time t+ � ; (ii) the downstate prevails at time t and then the upstate prevails at time t+ � .

Recombining means that the prices obtained from both ways agree. Thus,

u(t; t)�
�s�1X
k=�t

u(t; k�)�
�s�1X
k=�t+1

d(t+ �; k�)

= d(t; t)�
�s�1X
k=�t

d(t; k�)�
�s�1X
k=�t+1

u(t+ �; k�): (3.50)

This equation is automatically satis�ed if the di�erence u(t; s) � d(t; s) is constant and

independent of t and s, which is the case in the Ho-Lee model as we have seen above.

Binomial models are widely used in practice to value interest rate sensitive securities

since they are easy to implement. Other binomial models include the Black-Derman-Toy

model[2] and the Pedersen-Shiu-Thorlacius model[22].

3.6 Multinomial/Multifactor Interest Rate Models

Binomial models however have some shortcomings. One may be that the yield rates are

perfectly correlated. In other words, if one rate moves up, all other rates move up simulta-

neously and if one rate moves down all other rates move down simultaneously. Although

in many real situations interest rate scenarios are of this pattern, there are situations that

long term rates and short term rates are moving in an opposite direction. Another possible

shortcoming is �tting a binomial model to market data. Since there are only two states
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in each time step, a binomial model sometimes will not be able to accurately reproduce

the current yield curve and the volatility structure. Thus, there is a need to develop more

general lattice models to accomodate these situations.

One approach is to extend the binomial model in the previous section to a multinonimial

model.

Let �j(t); j = 1; � � � ; J be correlated random variables such that �j(t) = 0 or 1;PJ
j=1 �j(t) � 1: Denote Pj(t) = Pr(�j(t) = 1):

The basic model is as follows: for any t = �; � � � ; T ; s = t; t + �; � � � ; T;

f(t; s) = f(t� �; s) +
JX
j=0

�j(t)uj(t; s); (3.51)

where �0 = 1� �1 � � � � � �J . Hence, uj(t; s) is the increment of the forward rate process

at time t when the state f�j(t) = 1g prevails.
Similar to (3.45), the present value process of the s-maturity bond is

a(t; s) = e�� [
P�t�1

k=0
f(k�;k�)+

P�s�1

k=�t
f(t;k�)]

= e
�� [
P�t�1

k=0
f(k�;k�)+

P�s�1

k=�t
f(t��;k�)+

P�s�1

k=�t

PJ

j=0
�j(t)uj (t;k�)]

= e
�� [
P�t�2

k=0
f(k�;k�)+

P�s�1

k=�t�1
f(t��;k�)]

e
��
P�s�1

k=�t

PJ

j=0
�j(t)uj (t;k�)

= a(t� �; s)e
��
P�s�1

k=�t

PJ

j=0
�j(t)uj (t;k�)

= a(t� �; s)e
��
PJ

j=0
�j(t)(

P�s�1

k=�t
uj(t;k�)): (3.52)

The no-arbitrage condition implies that for each t; t = �; � � � ; T , there is a probability

measure Qt = (Q0(t); Q1(t); � � � ; QJ(t)) such that

Qt(�j(t) = 1) = Qj(t); j = 0; 1; � � � ; J;

and
JX
j=0

Qj(t)e
��
P�s�1

k=�t
uj(t;k�) = 1; (3.53)

for s = �t + 1; � � � ; �T :
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In this model, we do not require that all the values uj(t; s) be di�erent. This is im-

portant since it allows us to incorporate several economical factors into the model. For

instance, if we assume that the forward rate process includes two random shocks and they

are represented by two correlated binomial processes, we obtain a two factor model. In

this case,

f(t; s) = f(t� �; s) + Y1(t; s) + Y2(t; s): (3.54)

Let us denote the rate changes at time t for the time period [s; s + � ] in the upstate and

the downstate of the �rst random shock and the upstate and the downstate of the second

random shock as

Y1(t; s) =

0
B@ V1(t; s)

U1(t; s)

1
CA ; Y2(t; s) =

0
B@ V2(t; s)

U2(t; s)

1
CA ; (3.55)

respectively. The probability distribution of (Y1(t; s); Y2(t; s)) is denoted as

Pr(Y1 = V1; Y2 = V2) = q00(t); Pr(Y1 = V1; Y2 = U2) = q01(t);

Pr(Y1 = U1; Y2 = V2) = q10(t); Pr(Y1 = U1; Y2 = U2) = q00(t):

We obtain the well known discrete version of the Heath-Jarrow-Morton model[15]. It is

easy to see that this is a fourth-nomial model with

u0 = V1 + V2; u1 = V1 + U2; u2 = U1 + V2; u3 = U1 + U2:

Finally, we gives an arti�cial example to show how to compute a risk-neutral probability

measure for a given trinomial model.

Example 3.3 A Trinomial Model

Let J = 2. Assume that

1.

Pr(�0(t) = 1) = q1q2;
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Pr(�1(t) = 1) = (1� q1)q2;

Pr(�2(t) = 1) = 1� q2;

0 < q1 < 1; 0 < q2 < 1:

2. The average variance of the forward rate process is constant:

V ar
h
f(t; s)� f(t� �; s) jBt��

i
= �2�:

3.

u1(t; s)� u0(t; s) = u2(t; s)� u1(t; s):

We are looking for a risk-neutral probabililty measure in the following form:

Q0(t) = Q1Q2;

Q1(t) = (1�Q1)Q2;

Q2(t) = (1�Q2);

0 < Q1 < 1; 0 < Q2 < 1:

From Condition 2,

�2� = V ar
h 2X
j=0

�j(t)uj(t; s)
i

= [u1(t; s)� u0(t; s)]
2V ar(�2(t)� �0(t))

= [u1(t; s)� u0(t; s)]
2q2[1 + 3q1 � q2(1 + q1)

2]:

De�ne  to be

 = �

s
�

q2[1 + 3q1 � q2(1 + q1)2]
:

Then,

u0(t; s) = u1(t; s)�  ;

u2(t; s) = u1(t; s) +  :
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(3.53) implies that

Q1Q2e
��
P�s�1

k=�t
u1(t;k�)+(s�t) 

+ (1�Q1)Q2e
��
P�s�1

k=�t
u1(t;k�)

+ (1�Q2)e
��
P�s�1

k=�t
u1(t;k�)�(s�t) = 1;

for s > t.

Thus,

u0(t; s) =
1

�
log

Q1Q2e
(s�t) + (1�Q1)Q2e

�� + (1�Q2)e
�(s�t+2�) 

Q1Q2e
(s�t) + (1�Q1)Q2 + (1�Q2)e�(s�t) 

; (3.56)

u1(t; s) =
1

�
log

Q1Q2e
(s�t+�) + (1�Q1)Q2 + (1�Q2)e

�(s�t+�) 

Q1Q2e
(s�t) + (1�Q1)Q2 + (1�Q2)e�(s�t) 

; (3.57)

u2(t; s) =
1

�
log

Q1Q2e
(s�t+2�) + (1�Q1)Q2e

� + (1�Q2)e
�(s�t) 

Q1Q2e
(s�t) + (1�Q1)Q2 + (1�Q2)e�(s�t) 

: (3.58)
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Part II

Continuous-Time Finance Models
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Chapter 4

Stochastic Calculus

4.1 Characteristic Functions

In this section, we briey recall the characteristic function of a random variable which will

be used to identify the distribution of random variables we consider.

Let X be a random variable on (
;F ; P ). The characteristic function of X is de�ned

as follows: for any real z,

~fX(z) = E(eizX) =

Z


eizXdP; (4.1)

where i =
p�1. Let F (x) = Pr(X � x) be the distribution function of X and f(x) =

F 0(x), if it exists. Then

~fX(z) =

Z 1

�1
eizxdF (x) =

Z 1

�1
eizxf(x)dx: (4.2)

Remarks. (a) The domain of a characteristic function does not have to be real numbers.

It can be complex numbers as long as the corresponding expectations exist as shown in

the examples below. (b) If iz is replaced by �z or z, we obtain the Laplace transform or

the moment generating function respectively.

When X1; X2; � � � ; XT are independent, then the characteristic function of the sum
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X = X1 +X2 + � � �+XT is

~fX(z) = ~fX1
(z) ~fX2

(z) � � � ~fXT (z): (4.3)

It can also be shown that the distribution of a random variable is uniquely determined by

its characteristic function.

Example 4.1 Binomial Distribution

Let X = X1+X2+ � � �+XT , where Xt; t = 1; � � � ; T; be iid Bernoulli random variables:

PrfXt = h1g = q; PrfXt = �h2g = 1� q:

Then

~fX(z) =
h
qeih1z + (1� q)e�ih2z

iT
: (4.4)

Example 4.2 Normal Distribution

Let X be a normal random variable with mean � and variance �2, i.e.

f(x) =
1p
2��

e�
1
2
(
x��
�

)2 ; �1 < x <1:

Then,

~fX(z) = ei�z�
1
2
�2z2: (4.5)

4.2 Wiener Processes

Recall from Section 2.2 that the price of a risky security can be expressed in terms of a

random walk. In that case, the price S(t) at time t is

S(t) = S(0)eX� (t); 0 � t � T;

53



where X� (t) is a random walk with length of step � , average mean �, and average variance

�2.

Imagine that trading becomes more and more frequent and eventually continuous trad-

ing is achieved. This is the case when � ! 0. Thus, if X� (t) approaches a continuous-time

stochastic process, sayW (t), the price of the security will be expressed as S(t) = S(0)eW (t):

Obviously, the limiting stochastic process W (t) will inherit the properties that the random

walkX� (t) possesses. Hence,W (0) = 0; E(W (t)) = �t, and V ar(W (t)) = �2t. SinceX� (t)

is of independent increment, so is W (t). Thus, for any partition 0 < t1 < t2 < � � � < tj < t;

W (t1);W (t2)�W (t1); � � � ;W (t)�W (tj)

are independent.

We now show that such a limiting stochastic process does exist. we will �nd its distri-

bution by identifying its characteristic function.

Let ~f� (z; t) be the characteristic function of X� (t). From Example 4.1,

~f� (z; t) =
h
qeih1z + (1� q)e�ih2z

i�t
;

where �t = t=�:

Recalling that we may choose

h1 = �� + �
p
� ; h2 = ��� + �

p
� ; q =

1

2
;

we have

~f� (z; t) = ei�tz
hei�p�z + e�i�

p
�z

2

it=�
:

Using the Taylor expansion, it is easy to see

lim
�!0

~f� (z; t) = ei�tz�
1
2
�2tz2 :

Since the limit is a continuous function, X� (t) converges weakly to a random variableW (t).
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Comparing it with the characteristic function of a normal random variable in Example

4.2, we see that W (t) is a normal random variable with mean �t and variance �2t.

Remark: Weak convergence is de�ned as follows: a sequence of random variable Xn

converges weakly to a random variable X if for any bounded continuous function h(x),

limn!1E(h(Xn)) = E(h(X)): It can be shown (see Appendix A) that weak convergence

is equivalent to one of the following:

(i) The distribution function of Xn converges to the distribution function of X at any

continuous point;

(ii) The characteristic function of Xn converges to the characteristic function of X as

long as the characteristic function of X is continuous at z = 0.

Summarizing what we have derived above plus the fact that any linear combination

of normal random variables is still a normal random variable, we can make the following

conclusions.

1. The stochastic processW (t) is of independent increment. Moreover, for any partition

0 < t1 < t2 < � � � < tj < t;

W (t1);W (t2)�W (t1); � � � ;W (t)�W (tj)

are independent normal random variables. An implication of this property is that

W (t) is a Markovian process whose future position depends only on the current

position but not on the positions in the past. A very useful corollary is that for any

function h(w),

E(h(W (s)) jW (u); 0 � u � t) = E(h(W (s)) jW (t)):

2. For any s > t,

E(W (s)�W (t)) = �(s� t); (4.6)

V ar(W (s)�W (t)) = �2(s� t): (4.7)
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The stochastic process W (t) is called a Wiener process( or Brownian motion) with

drift � and in�nitesimal variance �2. Especially, a Wiener process with drift � = 0 and

in�nitesimal variance �2 = 1 is called a standard Wiener process.

The next property characterises Wiener processes.

3. A stochastic process W (t) is a Wiener process if and only if for any real �, the

stochastic process

Z�(t) = e�W (t)���t� 1
2
�2�2t (4.8)

is a martingale( with respect to the Borel �ltration generated by W (t)).

The necessary part follows from

E(e�[W (s)�W (t)] jBt) = e��(s�t)+
1
2
�2�2(s�t);

which can be obtained by letting z = �i� in Example 4.2.

For the su�cient part, we proceed as follows.

E(Z�(t)) = E(Z�(0)) = 1:

Thus, E(e�W (t)) = e��t+
1
2
�2�2t. W (t) is normal with mean �t and variance �2t. For

any s > t and real numbers �1; �2,

E(e�1[W (s)�W (t)]+�2W (t))

= E
n
E(e�1[W (s)�W (t)]+�2W (t)) jBt

o
= e�1�(s�t)+

1
2
�21�

2(s�t)E(e�2W (t))

= e�1�(s�t)+
1
2
�21�

2(s�t)+�2�t+ 1
2
�22�

2t: (4.9)

Di�erentiating (4.9) with respect to �1; �2 at �1 = 0; �2 = 0 yields

E([W (s)�W (t)]W (t)) = E(W (s)�W (t))E(W (t)):
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HenceW (s)�W (t) andW (t) are independent since two normal random variables are

independent if and only if their covariance is zero. Thus, W (t) is a Wiener process.

Many useful martingales related to W (t) can then be derived from Z�(t). Noting the

fact that the derivative of a martingale is still a martingale, if it exists,

W (t)� �t =
@Z�(t)

@�
j�=0

is a martingale. �
W (t)� �t

�2 � �2t =
@2Z�(t)

@�2
j�=0

is also a martingale.

Finally, we state without a proof that

4. All the paths (with probability one) of W (t) are continuous.

It is easy to see that for any Wiener process W (t), 1
�
(W (t)� �t) is a standard Wiener

process. Thus, from now on we always denote a standard Wiener process as W (t) and

alternative Wiener processes are written in the form �t+ �W (t).

Sometime we need to deal with a Wiener process starting at a point, say x, away from

zero. A standard Wiener process in this case is x+W (t). We call it the standard Wiener

process starting at x and denote it as W (t); W (0) = x:

As an application of Wiener processes, we consider a market with a riskfree bond and a

risky security over the period [0; T ]. Denote � as the force of interest or the continuously

compounded interest rate for the riskfree bond. We assume that the price of the risky

security at time t is

S(t) = S(0)e�t+�W (t); 0 � t � T: (4.10)

We call the exponential of a Wiener process a geometric Wiener process, Geometric Brow-

nian motion or Lognormal process.
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We now wish to price a European call option maturing at time T on the risky security

with strike price K. As we mentioned earlier, S(t) is actually the limit of the price process

of the binomial model we considered in Section 3.2. Let �c be the price under the above

continuous-time model and �� be the price the call under the binomial model, respectively.

Then �c = lim�!0 �� .

Recall from Section 3.4 that

�� = S(0)
X

s� �T log u+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA �qsd(1� �qd)

�T�s

� (1 + r)�
�TK

X
s� �T logu+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA qsd(1� qd)

�T�s;

with u = e��+�
p
� ; d = e����

p
� : Let

N(x) =
1p
2�

Z x

�1
e�

1
2
y2dy; n(x) =

1p
2�
e�

1
2
x2 (4.11)

be the distribution function and the densilty function of the standard normal random

variable. By the Central Limit Theorem(Appendix A),

lim
�!0

X
s� �T logu+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA �qsd(1� �qd)

�T�s = N(d1)

where

d1 = lim
�!0

�T log u+log(S(0)=K)

log(u=d)
� �T �qdq

�T �qd(1� �qd)
;

and

lim
�!0

X
s� �T log u+log(S(0)=K)

log(u=d)

0
B@ �T

s

1
CA qsd(1� qd)

�T�s = N(d2);

where

d2 = lim
�!0

�T log u+log(S(0)=K)

log(u=d)
� �Tqdq

�Tqd(1� qd)
:
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Since 1 + r = e�� , (3.22 ), (3.24) and (3.25) yield

qd =
e�
p
� � e(���)�

e�
p
� � e��

p
�
=
�
p
� + (�� � + �2=2)� +O(� 3=2)

2�
p
� +O(� 3=2)

;

=
�
p
� + (�� � + �2=2)� +O(� 3=2)

2�
p
�

;

1� qd =
e(���)� � e��

p
�

e�
p
� � e��

p
�

=
�
p
� � (�� � + �2=2)� +O(� 3=2)

2�
p
�

;

�qd =
e(���)� � e��

p
�

e�
p
� � e��

p
�

=
�
p
� + (�� � � �2=2)� +O(� 3=2)

2�
p
�

;

1� �qd =
e�
p
� � e(���)�

e�
p
� � e��

p
�
=
�
p
� � (�� � � �2=2)� +O(� 3=2)

2�
p
�

:

Thus,

d1 = lim
�!0

(�T+log(S(0)=K))
p
�+�T

2��
� �T+(�����2=2)Tp�+O(�2)

2��p
(�2�+O(�2))T

2��

=
log(S(0)=K) + (� + �2=2)T

�
p
T

: (4.12)

Similarly,

d2 = lim
�!0

(�T+log(S(0)=K))
p
�+�T

2��
� �T+(���+�2=2)Tp�+O(�2)

2��p
(�2�+O(�2))T

2��

=
log(S(0)=K) + (� � �2=2)T

�
p
T

(4.13)

Therefore, the price of the European call option

�c = S(0)N(d1)� e��TKN(d2); (4.14)

where d1 and d2 are given in (4.12) and (4.13). This formula is the well known Black-Scholes

option pricing formula.
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4.3 Reection Principle

Theorem 4.1(Reection Principle) Let W (t) be a standard Wiener process and a; h

be two nonnegative real numbers. Then,

Pr
n
max
0<s�t

W (s) � a;W (t) � a+ h
o
= Pr

n
max
0<s�t

W (s) � a;W (t) � a� h
o
: (4.15)

Corollary 4.2 Let [a+ h1; a+ h2]; h2 � h1 � 0; be any interval above the horizontal line

x = a. Its symmetric interval about x = a is [a� h2; a� h1]. Then we have

Pr
n
max
0<s�t

W (s) � a;W (t) 2 [a+h1; a+h2]
o
= Pr

n
max
0<s�t

W (s) � a;W (t) 2 [a�h2; a�h1]
o
:

(4.16)

Proof: Obviously,

Pr
n
max
0<s�t

W (s) � a;W (t) 2 [a+ h1; a+ h2]
o

= Pr
n
max
0<s�t

W (s) � a;W (t) � a+ h1

o
� Pr

n
max
0<s�t

W (s) � a;W (t) � a + h2

o
:

The right hand side can be written similarly. Applying Theorem 4.1 immediately obtains

the identity.

Interpretation:
n
max0<s�tW (s) � a;W (t) 2 [a + h1; a + h2]

o
is the set of all paths

which hit the horizontal line(barrier) x = a before reaching the interval [a + h1; a + h2].

Similarly,
n
max0<s�tW (s) � a;W (t) 2 [a � h2; a � h1]

o
is the set of all paths which hit

the barrier x = a before reaching the interval [a� h2; a� h1]. Since h1; h2 are arbitrary,

the reection principle roughly says that if a path hits the barrier x = a at some time s < t,

there is another path which is identical to the �rst path before and at time s and is the

mirror image of the �rst path about the barrier x = a after time s. With the symmetric

property of the standard Wiener process, the reection principle also implies that we may
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replace the path hitting the barrier x = a at some time s < t by a path which is the the

mirror image of the �rst path about the barrier x = a before time s and identical to the

�rst path after time s.

A very important application of the reection principle is to compute various barrier

hitting probabilities of the standard Wiener process. We will see in a later chapter these

hitting probabilities are very useful in valuation of barrier options.

In this section, we consider three cases.

First Passage Time

De�ne the following random variable

�a = infft > 0; W (t) = ag: (4.17)

Then �a is the time W (t) �rst hits the barrier x = a. We call it the �rst passage time of

W (t).

To �nd the distribution of �a, consider the event f�a � tg for any t. Since

f�a � tg = fmax
0<s�t

W (s) � ag;

we have

Prf�a � tg = Prfmax
0<s�t

W (s) � ag
= Prfmax

0<s�t
W (s) � a;W (t) � ag + Prfmax

0<s�t
W (s) � a;W (t) � ag

(Since PrfW (t) = ag = 0)

= 2Prfmax
0<s�t

W (s) � a;W (t) � ag (Reection Principle)

= 2PrfW (t) � ag (Since fW (t) � ag � fmax
0<s�t

W (s) � ag)

=

s
2

�t

Z 1

a
e�

1
2t
x2dx =

s
2

�

Z 1

a=
p
t
e�

1
2
x2dx:
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If a < 0, we have

Prf�a � tg =
s
2

�

Z 1

�a=
p
t
e�

1
2
x2dx:

This can be obtained by considering �W (t) instead of W (t).

It is easy to see from the above that �a is �nite since

Prf�a <1g = lim
t!1

Prf�a � tg =
s
2

�

Z 1

0
e�

1
2
x2dx = 1:

Thus, for any horizontal line, every path of a standard Wiener process will hit the line

sooner or later.

Now, let fa(t) be the density function of �a. We have

fa(t) =
d

dt
Prf�a � tg = jajp

2�t3
e�

a2

2t ; t > 0: (4.18)

This distribution is called the one-sided stable distribution of index 1
2
, which can be ob-

tained as a limit of Inverse Guassian distributions[9]. As we will see later on, this result

can be used to �nd the �rst passage time of a goemetric Wiener process.

Single Barrier

Let ga(x); a > 0 be the density function of W (T ); W (t) = a; for some 0 < t � T .

Thus ga(x)dx is the probability that a path hits the barrier x = a and then reaches point

x at time T . It is easy to see that ga(x) is a defective density function( a density function

is called defective if its integral is less than one). We will show below

ga(x) =

8><
>:

1p
2�T

e�
(x�2a)2

2T ; x < a

1p
2�T

e�
x2

2T ; x � a
(4.19)

Obviously, for x � a; any path to reach x at T will hit the barrier x = a before or at

T . Hence,

ga(x) =
1p
2�T

e�
x2

2T ; x � a:
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To see the rest, we use the reection principle. The probability of a path that hits the

barrier a and then reaches x at T is equal to the probability of a path that starts at 2a,

hits the barrier a, and then reaches x at T . Since the latter is just the probability that a

path starts at 2a and then reaches x at T . Hence it is equal to

1p
2�T

e�
(x�2a)2

2T :

We derived the density.

Double Barriers

We now consider the case there are two barriers: one upper barrier and one lower

barrier. We will derive the distribution of paths which never hit these barriers before time

T .

Let f(x; al; au); al < 0 < au be the density function of W (T ); al < W (t) < au for all

0 < t � T . Then

f(x; al; au) =

8><
>:

1p
2�T

Pn=1
n=�1fe�

[x+2n(au�al)]
2

2T � e�
[x�2au+2n(au�al)]

2

2T g; al < x < au

0; x � al or x � au:

(4.20)

The reection principle will repeatly be used in the derivation.

Let g(x; al; au) be the density function of W (T ); W (t) = au or al for some 0 < t � T .

Thus

f(x; al; au) =
1p
2�T

e�
x2

2T � g(x; al; au); al < x < au

Let

An = fthere exist 0 < t1 < t2 < � � � < tn � T such thatW (t2k+1) = au;W (t2k) = al andW (T ) 2 dxg;

Bn = fthere exist 0 < t1 < t2 < � � � < tn � T such thatW (t2k) = au;W (t2k+1) = al andW (T ) 2 dxg;

Then, An�1 \ Bn�1 = An [ Bn: Recalling that

Pr(An�1 [Bn�1) = Pr(An�1) + Pr(Bn�1)� Pr(An�1 \ Bn�1);
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we have

g(x; al; au) = Pr(A1 [ B1) = Pr(A1) + Pr(B1)� Pr(A1 \B1)

= Pr(A1) + Pr(B1)� Pr(A2 [ B2)

� � �
=

1X
n=1

(�1)n�1[Pr(An) + Pr(Bn)]:

The problem then becomes how to compute Pr(An) and Pr(Bn). It is easy to see

Pr(A1) =
1p
2�T

e�
(x�2au)

2

2T dx:

By applying the reection principle twice, we have

Pr(A2) =
1p
2�T

e�
[x+2(au�al)]

2

2T dx:

In general, we have

Pr(A2n+1) =
1p
2�T

e�
[x�2au�2n(au�al)]

2

2T dx;

and

Pr(A2n) =
1p
2�T

e�
[x+2n(au�al)]

2

2T dx:

Exchanging au and al in the above, we have

Pr(B2n+1) =
1p
2�T

e�
[x�2au�2(n+1)(au�al)]

2

2T dx;

and

Pr(B2n) =
1p
2�T

e�
[x�2n(au�al)]

2

2T dx:

With some tedious algebra, we obtain the density function (4.20).

4.4 Stochastic(Ito) Integral

In this section, we will deal with the integration of a stochastic process with respect to

a standard Wiener process. For simplicity, we always assume that stochastic processes

considered are continuous, namely, all of their paths are continuous.
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Let X(t) be a continuous stochastic process on (
;F ;Bt; P ); 0 � t � T , where Bt is
the Borel �ltration generated by the standard Wiener process.

De�ne the integral of X(t) on [a; b]; 0 � a < b � T; as

Z b

a
X(t)dW (t) = lim

max jtj�tj�1j!0

JX
j=1

X(tj�1)[W (tj)�W (tj�1)]; (4.21)

where a = t0; t1 < � � � < tJ�1 < tJ = b is a partition on [a; b] and the limit is taken in the

sense of uniform convergence in probability. It can be shown that the above limit always

exists and is independent of the choice of partitions. We call this limit the Ito integral of

X(t) on [a; b].

Remark: The de�nition of an Ito integral only requires that the process X(t) satisfy

Z T

0
X2(t)dt <1;

which is automatically satis�ed by continuous stochastic processes.

Many properties of the usual Riemannian integration are carried over to Ito integration.

For instance,

1. Z b

a
[X1(t) +X2(t)]dW (t) =

Z b

a
X1(t)dW (t) +

Z b

a
X2(t)dW (t);

2. Z c

a
X(t)dW (t) =

Z b

a
X(t)dW (t) +

Z c

b
X(t)dW (t);

However, there are fundamental di�erences between these integrations. Firstly,
R b
a X(t)dW (t)

is a random variable on (
;Bb; P ) and if

E
� Z b

a
X2(t)dt

�
<1; (4.22)

then

E
� Z b

a
X(t)dW (t)

�
= 0; (4.23)
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and

V ar
n� Z b

a
X(t)dW (t)

�2o
= E

n� Z b

a
X(t)dW (t)

�2o
= E

� Z b

a
X2(t)dt

�
: (4.24)

The �rst implication is obvious from the de�nition. The second implication follows

from

E
�
X(tj�1)[W (tj)�W (tj�1)]

�
= E

�
E
�
X(tj�1)[W (tj)�W (tj�1)]

�
j W (tj�1)

�
= 0;

and

E
�
X(tj�1)X(ti�1)[W (tj)�W (tj�1)][W (ti)�W (ti�1)]

�

=

8><
>:
E
�
X2(tj�1)[W (tj)�W (tj�1)]

2
�
; i = j

0; i < j

=

8><
>:
E
�
X2(tj�1)(tj � tj�1)

�
; i = j

0; i < j:

Second and more importantly, the point at which the value of X(t) is taken in each

subinterval [tj�1; tj] is critical. Under Ito integration, it is always the value at the left

endpoint. Unlike the usual Riemannian integration, di�erent choice of points will lead to

di�erent stochastic integration. For example, if we choose the midpoint of each subinterval,

the limit obtained will be a Stratonovich integral. It can also be seen from the following

example.

Example 4.3 Consider

Z b

a
W (t)dW (t) = lim

max jtj�tj�1j!0

JX
j=1

W (tj�1)[W (tj)�W (tj�1)]

=
1

2
lim

max jtj�tj�1j!0

JX
j=1

fW 2(tj)�W 2(tj�1)� [W (tj)�W (tj�1)]
2g

=
1

2
[W 2(b)�W 2(a)]� 1

2
lim

max jtj�tj�1j!0

JX
j=1

[W (tj)�W (tj�1)]
2:
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The summation in the second term is the sum of squares of independent normal random

variables. Moreover,

E
� JX
j=1

[W (tj)�W (tj�1)]
2
�
=

JX
j=1

(tj � tj�1) = b� a;

and

V ar
� JX
j=1

[W (tj)�W (tj�1)]
2
�
= 2

JX
j=1

(tj � tj�1)
2 ! 0; as max jtj � tj�1j ! 0:

Thus,

lim
max jtj�tj�1j!0

JX
j=1

[W (tj)�W (tj�1)]
2 = b� a:

We then have Z b

a
W (t)dW (t) =

W 2(b)�W 2(a)� (b� a)

2
:

Now if we use the right endpoint of each subinterval instead of the left endpoint, the similar

argument will give

(R)

Z b

a
W (t)dW (t) = lim

max jtj�tj�1j!0

JX
j=1

W (tj)[W (tj)�W (tj�1)]

=
1

2
lim

max jtj�tj�1j!0

JX
j=1

fW 2(tj)�W 2(tj�1) + [W (tj)�W (tj�1)]
2g

=
W 2(b)�W 2(a) + (b� a)

2
;

which is di�erent from what we have from Ito integration.

4.5 Stochastic Di�erential Equations and Ito's Lemma

Let �(t; x) and �(t; x) be two continuous functions in their domain. If there exists a

continuous stochastic process X(t); 0 � t � T on (
;F ;Bt; P ) such that

X(t) = X(0) +

Z t

0
�(s;X(s))ds+

Z t

0
�(s;X(s))dW (s); 0 � t � T; (4.25)
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we say that X(t) is a solution of the stochastic di�erential equation(SDE)

dX(t) = �(t; X(t))dt+ �(t; X(t))dW (t); (4.26)

with initial condition X(0), or simply

dX = �(t; X)dt+ �(t; X)dW: (4.27)

The function �(t; X) and �(t; X) are often referred to as the drift and the in�nitesimal

deviation of the SDE. In �nance, �(t; X(t)) is also called the volatility of the stochastic

process X(t). The solution X(t) is also called an Ito process.

It can be proved that if there is L > 0, independent of t and x, such that

1. (Lipschitz condition) for any x1 and x2,

j�(t; x1)� �(t; x2)j+ j�(t; x1)� �(t; x2)j � Ljx1 � x2j; (4.28)

2. (Linear Growth condition) for any x,

j�(t; x)j+ j�(t; x)j � L(1 + jxj); (4.29)

there exists an unique solution on [0; T ] for the SDE (4.24) with initial condition X(0).

Example 4.4 Consider

dX = �dt+ �dW; (4.30)

where � and � are constants. Then its solution is

X(t) = X(0) + �t+ �W (t): (4.31)

We now state without a proof two of the most important results in stochastic calculus.

Not only are they the building blocks for many other important results in stochastic calculus

but also they provide a methodology in solving stochastic di�erential equations.
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The �rst result is called Ito's Lemma. It is the stochastic version of the chain rule.

Theorem 4.3(Ito's Lemma)

Let X(t) be a solution of the stochastic di�erential equation (4.25) and g(t; x) be a

function which is continuously di�erentiable in t and continuously twice di�erentiable in

x. Then g(t; X(t)) is a solution of the following SDE

dg(t; X) = [
@

@t
g(t; X) + �(t; X)

@

@x
g(t; X) +

1

2
�2(t; X)

@2

@x2
g(t; X)]dt

+ �(t; X)
@

@x
g(t; X)dW: (4.32)

Example 4.5 Consider the following SDE

dX = �Xdt+ �XdW; (4.33)

where � and � are constants.

Let g(t; x) = logx: Ito's Lemma yields

d logX = (�� 1

2
�2)dt+ �dW:

Thus,

logX(t) = logX(0) + (�� 1

2
�2)t+ �W (t):

Therefore, the solution of the equation is

X(t) = X(0)e(��
1
2
�2)t+�W (t); (4.34)

a geometric Wiener process.

Example 4.6 Consider the following SDE

dX = (�X + �)dt+ dW; (4.35)
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where �; � and  are constants.

For the special case � =  = 0, it becomes an ordinary di�erential equation(ODE) and

one of its solutions is e�t. Thus we are seeking a solution of (4.35) in the form of

X(t) = e�tY (t);

for some stochastic process Y (t).

Since Y (t) = e��tX(t); we let g(t; x) = e��tx: Applying Ito's Lemma, we obtain

dY = �e��tdt+ e��tdW:

Thus,

Y (t) = Y (0) + �

Z t

0
e��sds+ 

Z t

0
e��sdW (s):

Therefore,

X(t) = X(0)e�t + �

Z t

0
e�(t�s)ds+ 

Z t

0
e�(t�s)dW (s): (4.36)

It is easy to see that for each t, X(t) is a normal random variable with mean X(0)e�t +

�
R t
0 e

�(t�s)ds and variance 2
R t
0 e

2�(t�s)ds:

Next result is the stochastic version of integration by parts.

Theorem 4.4 Let X1(t) and X2(t) be solutions of the following SDEs:

dX1 = �1(t; X1)dt+ �1(t; X1)dW; (4.37)

and

dX2 = �2(t; X2)dt+ �2(t; X2)dW; (4.38)

respectively.

Then,

dX1X2 = X2dX1 +X1dX2 + �1(t; X1)�2(t; X2)dt (4.39)

= [�1(t; X1)X2 + �2(t; X2)X1 + �1(t; X1)�2(t; X2)]dt

+ [�1(t; X1)X2 + �2(t; X2)X1]dW: (4.40)
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Ito's Lemma and integration by parts are very powerful tools, especially when they are

used together as we show in the next example and in the next section.

Example 4.7 Consider the following SDE

dX = (�X + �)dt+ ( + �X)dW; � 6= 0: (4.41)

where �; �;  and � are constants. We will show how to apply the integration by parts

to solve this equation.

First we assume  = 0.

When � = 0; we obtain the SDE in Example 4.5, whose solution, denoted by �(t), is a

geometric Wiener process

�(t) = e(��
1
2
�2)t+�W (t):

Similar to Example 4.6, we are seeking a solution in the form of X(t) = �(t)Y (t); for some

process Y (t).

Since Y (t) = ��1(t)X(t); we may apply integration by parts as long as we can express

��1(t) as a solution of a SDE. From

��1(t) = e�(��
1
2
�2)t��W (t);

It satis�es

d��1 = (�� + �2)��1dt� ���1dW;

(simply compare it with the SDE in Example 4.5).

Hence Theorem 4.4 yields

dY = ���1dt:

Y (t) = Y (0) + �

Z t

0
��1(s)ds = Y (0) + �

Z t

0
e�(��

1
2
�2)s��W (s)ds:

Therefore,

X(t) = �(t)[Y (0) + �

Z t

0
e�(��

1
2
�2)s��W (s)ds]

= X(0)e(��
1
2
�2)t+�W (t) + �

Z t

0
e(��

1
2
�2)(t�s)+�[W (t)�W (s)]ds: (4.42)
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When  6= 0, we let ~X(t) = X(t) + 
�
. Then

d ~X = (� ~X + � � �

�
)dt+ � ~XdW:

We have

X(t) = ~X(t)� 

�

= �
�
+ (X(0) +



�
)e(��

1
2
�2)t+�W (t)

+ (� � �

�
)

Z t

0
e(��

1
2
�2)(t�s)+�[W (t)�W (s)]ds: (4.43)

4.6 Feynman-Kac Formula and Other Applications

The Feynman-Kac formula provides solutions for a particular class of partial di�erential

equations(PDEs). Since the prices of many European-type derivatives are often a solu-

tion of some PDE as we will see in the next section, the Feynman-Kac formula plays an

important role in option pricing.

Theorem 4.5(Feynman-Kac formula)

Let u(t; x) be the solution of the following PDE

@

@t
u(t; x) +

1

2

@2

@x2
u(t; x) + (x)u(t; x) = 0; 0 � t � T; (4.44)

with terminal condition u(T; x) =  (x); where (x) is a continuous function bounded

from above and  (x) is a continuous function satisfying the linear growth condition (4.29).

Further assume that ju(t; x)j � Lex
k

; for some L > 0 and k < 2.

Then

u(t; x) = E
n
e
R T
t
(W (s))ds

 (W (T )) jW (t) = x
o
; (4.45)

where W (t) is a standard Wiener process.
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Proof: De�ne

X1(t) = e
R t
0
(W (s))ds

; and X2(t) = u(t;W (t)):

Then

dX1 = (W )X1dt

and

dX2 = [
@

@t
u(t;W ) +

1

2

@2

@x2
u(t;W )]dt+

@

@x
u(t;W )dW:

The �rst equation is obtained by ordinary di�erentiation and the second equation is ob-

tained by Ito's Lemma.

Theorem 4.4 then yields

dX1X2 = X2dX1 +X1dX2

= e
R t
0
(W (s))ds @

@x
u(t;W )dW:

Thus

X1(t)X2(t) = X1(0)X2(0) +

Z t

0
e
R r
0
(W (s))ds @

@x
u(r;W (r))dW (r):

Using the property that an Ito integral is a local martingale(this is beyond the scope of

these notes) and that the tail distribution of the hitting time of a standard Wiener process

to the boundary of the interval [�a; a] is of order e�ca2 , we can show that indeed

E
n Z t

t0
e
R r
0
(W (s))ds @

@x
u(r;W (r))dW (r)

o
= 0:

Hence, X1(t)X2(t) is a martingale. Thus,

E
n
e
R T
0
(W (s))ds

u(T;W (T )) jW (t) = x
o
= e

R t
0
(W (s))ds

u(t; x):

Dividing both sides by e
R t
0
(W (s))ds yields the result, since u(T;W (T )) =  (W (T )).

As we have seen in Section 4.2, the stochastic process

Z�(t) = e�W (t)���t� 1
2
�2�2t
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is a martingale. Using this martingale, we have derived other martingales in terms of the

Wiener process. Applying Ito's Lemma and integration by parts, we are able to extend

this result to a solution of a SDE.

Theorem 4.6 Let X(t) be a solution of the following SDE

dX = �(t; X)dt+ �(t; X)dW; (4.46)

where �(t; x) is bounded.

For any bounded stochastic process b(t), de�ne a stochastic process

Zb(t) = e
R t
0
b(s)dX(s)�

R t
0
b(s)�(s;X(s))ds� 1

2

R t
0
b2(s)�2(s;X(s))ds

: (4.47)

Then Zb(t) is a martingale.

Proof: De�ne

X1(t) = e
�
R t
0
b(s)�(s;X(s))ds� 1

2

R t
0
b2(s)�2(s;X(s))ds

and

X2(t) = e
R t
0
b(s)dX(s)

:

Then Zb(t) = X1(t)X2(t): Since

dX1 = �[b(t)�(t; X) +
1

2
b2(t)�2(t; X)]X2dt

and by Ito's Lemma

dX2 = [b(t)�(t; X) +
1

2
b2(t)�2(t; X)]X1dt+ b(t)�(t; X)]X1dW;

dZb = X2dX1 +X1dX2 = b(t)�(t; X)ZbdW:

Since b and � are bounded, if E(Z2
b (t)) is bounded, then Zb(t) is a martingale. The

boundedness of E(Z2
b (t)) can be proved in two steps: �rst, assume b(t) is a step function;
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then assume b(t) is the limit of a sequence of step functions. The boundedness of the

expectation in the second step is ensured by the Fatou's lemma[25].

Corollary 4.7 For any real �,

Z�(t) = e
�X(t)��

R t
0
�(s;X(s))ds� 1

2
�2
R t
0
�2(s;X(s))ds (4.48)

is a martingale.

Proof: Simply let b(t) = �:

Corollary 4.8 the stochastic processes

X(t)�
Z t

0
�(s;X(s))ds (4.49)

and

[X(t)�
Z t

0
�(s;X(s))ds]2 �

Z t

0
�2(s;X(s))ds (4.50)

are martingales.

Proof: Notice that (4.49) and (4.50) are the �rst and second derivative of Z�(t) with

respect to � at � = 0. The corollary follows from the fact that the derivative of a martingale

is a martingale.

4.7 Option Pricing: Dynamic Hedging Approach

In this section, we apply the Feynman-Kac formula to option pricing.

Suppose that there is a market with a riskfree bond and a risky security. The prices of

the bond and the security at time t are denoted as B(t) and S(t); 0 � t � T , respectively.

Assume that

dB = �Bdt; (4.51)

dS = �Sdt+ �SdW: (4.52)
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This is the case we discussed in the end of Section 4.2 with � = �� 1
2
�2.

Consider now a European-type derivative which pays �(S(T )) at time T , where �(x) is

a continuous function with linear growth. Let �(t; S) be the price of the derivative at time

t when the price of the underlying security at t is S. Suppose that there is a self-�nancing

strategy under which we are able to construct a portfolio from the bond and the risky

security such that the value of this portfolio at time T will be exactly equal to the payo�

of the derivative �(S(T )). Thus, if the market does not admit arbitrage, the value of the

portfolio at time t must be equal to the price of the derivative at time t. Let �(t; S) be

the value of the risky security in the portfolio at time t. The value of the bond at time t

then is �(t; S)��(t; S). The self-�nancing strategy implies that

d�(t; S) = [�(t; S)��(t; S)]
dB

B
+�(t; S)

dS

S
;

because that the right-hand side is the capital gain during the period [t; t + dt], which is

fully reinvested under this equation. Thus,

d�(t; S) = [��(t; S) + (�� �)�(t; S)]dt+ ��(t; S)dW: (4.53)

On the other hand, if we assume that �(t; S) satis�es the conditions of Ito's Lemma, we

have

d�(t; S) = [
@

@t
�(t; S) + �S

@

@S
�(t; S) +

1

2
�2S2 @

2

@S2
�(t; S)]dt+ �S

@

@S
�(t; S)dW: (4.54)

Equating the respective coe�cients in these two equations, we have

�(t; S) = S
@

@S
�(t; S); (4.55)

��(t; S) + (�� �)�(t; S) =
@

@t
�(t; S) + �S

@

@S
�(t; S) +

1

2
�2S2 @

2

@S2
�(t; S): (4.56)

Eliminating �(t; S) from (4.56) yields

@

@t
�(t; S) +

1

2
�2S2 @

2

@S2
�(t; S) + �S

@

@S
�(t; S)� ��(t; S) = 0; (4.57)
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for any 0 � t � T and S � 0. Thus, �(t; S) is the solution of the PDE (4.57) with terminal

condition �(T; S) = �(S):

Now our problem becomes how to solve the above PDE. It is obvious we can not apply

the Feynman-Kac formula directly. However, we are able to convert it into a PDE to which

the Feynman-Kac formula can apply. We will do it in two steps.

1. Eliminating S and S2 in the coe�cients.

Noting that the PDE is similar to an Euler-type ODE, we let S = e�x and v(t; x) =

�(t; ex): Hence,

@

@x
v(t; x) = �e�x

@

@x
�(t; ex) = �S

@

@S
�(t; S);

@2

@x2
v(t; x) = �2S2 @

2

@S2
�(t; S) + �2S

@

@S
�(t; S):

Thus, v(t; x) is the solution of the PDE

@

@t
v(t; x) +

1

2

@2

@x2
v(t; x) +

1

�
(� � 1

2
�2)

@

@x
v(t; x)� �v(t; x) = 0; (4.58)

with v(T; x) = �(e�x):

2. Eliminating the �rst-order term @
@x
v(t; x).

Since (4.58) is similar to a second-order linear ODE, the technique used there can apply.

Let v(t; x) = e�xu(t; x); where � will be determined later.

@

@x
v(t; x) = e�x

@

@x
u(t; x) + �e�xu(t; x);

@2

@x2
v(t; x) = e�x

@2

@x2
u(t; x) + 2�e�x

@

@x
u(t; x) + �2e�xu(t; x):

Thus,

@

@t
u(t; x) +

1

2

@2

@x2
u(t; x) + [�+

1

�
(� � 1

2
�2)]

@

@x
u(t; x) + [

1

2
�2 +

�

�
(� � 1

2
�2)� �]u(t; x) = 0:

(4.59)
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Let � = � 1
�
(� � 1

2
�2). Then, u(t; x) is the solution of

@

@t
u(t; x) +

1

2

@2

@x2
u(t; x)� [

1

2�2
(� � 1

2
�2)2 + �]u(t; x) = 0; (4.60)

with u(T; x) = e
1
�
(�� 1

2
�2)x�(e�x):

We now can apply the Faynman-Kac formula to (4.60). Hence,

u(t; x) = e
�[ 1

2�2
(�� 1

2
�2)2+�](T�t)

E
n
e
1
�
(�� 1

2
�2)W (T )�(e�W (T )) jW (t) = x

o
: (4.61)

Noting that W (T ); condition on W (t) = x; where x = 1
�
logS, is a normal random

variable with mean x and variance T � t.

�(t; S) = e
�[ 1

2�2
(�� 1

2
�2)2+�](T�t)� 1

�
(�� 1

2
�2)x

� E
n
e
1
�
(�� 1

2
�2)W (T )�(e�W (T )) jW (t) = x

o

=
1q

2�(T � t)
e
�[ 1

2�2
(�� 1

2
�2)2+�](T�t)� 1

�
(�� 1

2
�2)x

�
Z 1

�1
e

1
�
(�� 1

2
�2)y�(e�y)e

� 1
2(T�t) (y�x)2dy

=
e��(T�t)q
2�(T � t)

Z 1

�1
�(Se�y)e

� 1
2(T�t) [y�

1
�
(�� 1

2
�2)(T�t)]2

dy

=
e��(T�t)q
2�(T � t)

Z 1

�1
�(Se(��

1
2
�2)(T�t)+�y)e�

1
2(T�t) y

2

dy:

The above formula can be interpreted as follows: We imagine that there is a phantom

risky security in the same period. Its price ~S(t) also follows a geometric Wiener process

but its expected return is exactly the same as the return of the riskfree bond, that is,

~S(t) = ~S(0)e(��
1
2
�2)t+�W (t):

Then the derivative price we obtained can be written as

�(t; S) = e��(T�t)E
n
�( ~S(T ) j ~S(t) = S

o
: (4.62)
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It says that the price of the derivative at time t is the discounted value, at the riskfree rate

�, at time t of the expected payo�, when the underlying security is the phantom security

we de�ne above.

We now use this formula to reproduce the Black-Scholes formula for a European call

option we have derived in Section 4.2. Let �c(t; S) be the price. Then,

�c(t; S) =
e��(T�t)q
2�(T � t)

Z 1

�1
max(Se(��

1
2
�2)(T�t)+�y �K; 0)e

� 1
2(T�t) y

2

dy

=
e��(T�t)q
2�(T � t)

Z
y� log(S=K)+(�� 1

2
�2)(T�t)

�

(Se(��
1
2
�2)(T�t)��y �K)e

� 1
2(T�t)y

2

dy

=
Sq

2�(T � t)

Z
y� log(S=K)+(�� 1

2
�2)(T�t)

�

e
� 1

2(T�t) [y+�(T�t)]2dy

� e��(T�t)Kq
2�(T � t)

Z
y� log(S=K)+(�� 1

2
�2)(T�t)

�

e
� 1

2(T�t) y
2

dy

=
Sp
2�

Z
y� log(S=K)+(�+1

2
�2)(T�t)

�
p
T�t

e�
1
2
y2dy

� e��(T�t)Kp
2�

Z
y� log(S=K)+(�� 1

2
�2)(T�t)

�
p
T�t

e�
1
2
y2dy:

Thus,

�c(t; S) = SN(d1)�Ke��(T�t)N(d2); (4.63)

where

d1 =
log(S=K) + (� + 1

2
�2)(T � t)

�
p
T � t

(4.64)

and

d2 =
log(S=K) + (� � 1

2
�2)(T � t)

�
p
T � t

: (4.65)

We obtain the Black-Scholes formula.
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4.8 Girsanov Theorem

Theorem 4.9(Girsanov) Let W (t); 0 � t � T; be a standard Wiener process on a

probability space (
, F ; P ) and b(t) a bounded stochastic process. De�ne a function on

all the events in F in the following way: for any F 2 F ,

Q(F ) =

Z
F
e
R T
0
b(t)dW (t)� 1

2

R T
0
b2(t)dt

dP: (4.66)

Then,

1. Q is a probability measure on (
, F) and it is equivalent to P ;

2. the stochastic process

~W (t) = �
Z t

0
b(s)ds+W (t) (4.67)

is a standard Wiener process under the probability measure Q.

Proof: De�ne a stochastic process

z(t) = e
R t
0
b(s)dW (s)� 1

2

R t
0
b2(s)ds

: (4.68)

Since b(t) is bounded, by Theorem 4.6 z(t) is a martingale under P ( � = 0 and � = 1 in

this case). Thus,

Q(
) =

Z


e
R T
0
b(t)dW (t)� 1

2

R T
0
b2(t)dt

dP

= E(z(T )) = z(0) = 1:

It is easy to see from the de�nition that Q is nonnegative and additive on F . Hence Q is

a probability measure. Since z(t) is the Radon-Nikodym derivative of Q with respect to P

and it is always �nite and positive, Q and P are equivalent.

Next, we show that ~W (t) is a standard Wiener process under Q.
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Recall (Section 4.2) that ~W (t) is a standard Wiener process if and only if for any real

�,

Z�(t) = e�
~W (t)� 1

2
�2t

is a martingale. Denote that EQ the expectation under Q. We need to show that for any

s > t,

EQ

n
Z�(s) jBt

o
= Z�(t): (4.69)

Given any F 2 Bt, we have
Z
F
EQ

n
Z�(s) jBt

o
dQ =

Z
F
EQ

n
Z�(s) jBt

o
z(T )dP

=

Z
F
E
n
EQ

n
Z�(s) jBt

o
z(T ) jBt

o
dP =

Z
F
EQ

n
Z�(s) jBt

o
z(t)dP:

On the other hand,

Z
F
EQ

n
Z�(s) jBt

o
dQ =

Z
F
Z�(s)dQ =

Z
F
Z�(s)z(T )dP

=

Z
F
E
n
Z�(s)z(T ) jBt

o
dP =

Z
F
E
n
E
n
Z�(s)z(T ) jBs

o
jBt
o
dP

=

Z
F
E
n
Z�(s)z(s) jBt

o
dP:

Hence

EQ

n
Z�(s) jBt

o
z(t) = E

n
Z�(s)z(s) jBt

o
: (4.70)

We now show that Z�(t)z(t) is a martingale under P . De�ne

X1(t) = e
�W (t)+

R t
0
b(s)dW (s)

and

X2(t) = e
� 1

2
�2t��

R t
0
b(s)ds� 1

2

R t
0
b2(s)ds

:

Then, Applying Ito's Lemma, we obtain

dX1 =
1

2
[�+ b(t)]2X1dt+ [�+ b(t)]X1dW
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and

dX2 = �1

2
[� + b(t)]2X2dt:

The integration by parts yields

d[Z�z] = d[X1X2] = [�+ b(t)]Z�zdW:

Similar to the proof of Theorem 4.6, Z�(t)z(t) is a martingale under P . Therefore,

E
n
Z�(s)z(s) jBt

o
= Z�(t)z(t):

Since z(t) is positive, we have from (4.70)

EQ

n
Z�(s) jBt

o
= Z�(t):

The proof is complete.

It is important to note that z�1(t) can be written as

z�1(t) = e
�
R t
0
b(s)d ~W (s)� 1

2

R t
0
b2(s)ds

: (4.71)

Thus, z�1(t) is a martingale under the probability measure Q. This property is often used

when we need to change form the probability measure Q to the probability measure P .

We now examine the SDE

dX = �(t; X)dt+ �(t; X)dW (4.72)

under the new probability measure Q.

Replacing W (t) by
R t
0 b(s)ds+

~W (t), we have

dX = [�(t; X) + �(t; X)b(t)]dt + �(t; X)d ~W: (4.73)

Thus, under the probability measure Q, the SDE has new drift �(t; X) + �(t; X)b(t) but

the same volatility �(t; X). This leads to the following corollary
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Corollary 4.10 Let X(t) be a solution of the SDE (4.72), where �(t; x) is a positive

function. Also let �(t; x) be a continuous function such that

�(t; x)� �(t; x)

�(t; x)
(4.74)

is bounded.

Then, there exists a probability measure Q such that under this measure X(t) is a

solution of the following SDE

dX = �(t; X)dt+ �(t; X)d ~W; (4.75)

where ~W (t) is a standard Wiener process under Q. Moreover, the Radon-Nikodym deriva-

tive of Q with respect to P is

dQ

dP
= e

R T
0
b(t)dW (t)� 1

2

R T
0
b2(t)dt

; (4.76)

where

b(t) =
�(t; X(t))� �(t; X(t))

�(t; X(t))
: (4.77)

Corollary 4.10 is a very important result for continuous-time �nance models. As we

will see in the next chapter that no arbitrage in a price system will imply that there is a

unique probability measure such that all present value processes under this new measure are

martingales. It is equivalent to the condition that the SDEs representing price processes

will have the same drift. Thus, Corollary 4.10 provides a methodology to �nd a such

measure. We will study it further in the next chapter.

Another application of the Girsanov Theorem is to compute barrier hitting probabilities

for Wiener processes with drift.

Consider a Wiener process with drift �: W�(t) = �t+W (t); whereW (t) is the standard

Wiener process. Let x = a+ kt be a straight line(horizontal or nonhorizontal). De�ne

� = infft; W�(t) = a + ktg: (4.78)
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Then � is the �rst passage time for the barrier x = a + kt: It is easy to see that

� = infft; W (t)� (k � �)t = ag. Let

b = k � � and z(t) = ebW (t)� 1
2
b2t: (4.79)

Then ~W (t) = W (t)� (k� �)t is a standard Wiener process under ~Q generated by z(T ) in

(4.79) and � is the �rst passage time of ~W (t) under ~Q. Thus its density under ~Q is given

in (4.18). Let f(t; a; k) be the density function of � . Then we have

f(t; a; k)dt = Ef�f�2dtgg
= E ~Qf�f�2dtgz�1(t)g

= z�1(t)fa(t)dt =
jajp
2�t3

e�
b2

2t
(t+a=b)2dt:

Thus,

f(t; a; k) =
jajp
2�t3

e�
b2

2t
(t+a=b)2 ; (4.80)

where b is given in (4.79).

To identify the distribution of � , we introduce the inverse Guassian(IG) distribution

which has density

fIG(x) =
�p

2��x3
e
� 1

2�x
(x��)2

; x > 0; (4.81)

where � > 0; � > 0: � and � are called the location parameter and dispersion parameter

respectively. Its distribution function can be expressed in terms of the distribution function

of the standard normal distribution

FIG(x) = N
�x� �p

�x

�
+ e2�=�N

�
� x + �p

�x

�
: (4.82)

The Laplace transform is

~fIG(z) = e
�
�
(1�
p

1+2�z)
: (4.83)

If we allow � to be negative(� in the coe�cient is replaced by j�j accordingly), we obtain
a defective inverse Guassian distribution since

fIG(x) = e2�=� f̂IG(x); (4.84)
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where f̂IG(x) is the nondefective density of an IG distribution with location parameter ��
and dispersion parameter �.

By comparing the density of the IG distribution and the function form of f(t; a; k), we

have the following Corollary.

Corollary 4.11 The distribution of the �rst passage time � de�ned in (4.78) for a Wiener

process with drift � is an IG distribution with � = �a=b and � = 1=b2. If �a=b > 0, the

distribution is nondefective hence � is a �nite random variable. In this case, the Wiener

process �t + W (t) will hit the barrier x = a + kt sooner or later. If �a=b < 0, the

distribution is defective and Prf� <1g = e�2ab:

Next, we consider the distribution of W (T );W (t) + �t = a + kt for some 0 � t � T .

Let g(x; a; k) be its density function. Then,

g(x; a; k)dt = Ef�fW (T )2dx;W�(t)=a+kt;0�t�Tgg
= E ~Qf�f ~W (T )2dy; ~W (t)=a;0�t�Tgz

�1(T )g
(where y = x + (�� k)T = x� bT )

= e�by�
1
2
b2Tga(y)dy (since z�1(T ) = e�b

~W (T )� 1
2
b2T = e�by�

1
2
b2T )

= e�bx+
1
2
b2Tga(x� bT )dx;

where ga(x) is given in (4.19). We thus have

g(x; a; k) =

8><
>:

1p
2�T

e�
(x�2a)2

2T
�2ab; x < a+ bT

1p
2�T

e�
x2

2T ; x � a + bT
(4.85)

Similarly for a < 0, we have

g(x; a; k) =

8><
>:

1p
2�T

e�
(x�2a)2

2T
�2ab; x > a+ bT

1p
2�T

e�
x2

2T ; x � a + bT
(4.86)
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For the double-barrier case, the density function ofW (T ); al+kt < W (t)+�t < au+kt

for all 0 � t � T , is

f(x) =

8>>>>>>>><
>>>>>>>>:

1p
2�T

Pn=1
n=�1 e2nb(au�al)fe� [x+2n(au�al)]

2

2T � e�
[x�2au+2n(au�al)]

2

2T
�2baug;

al + bT < x < au + bT

0;

x � al + bT or x � au + bT:

(4.87)

The derivation is very similar to the single barrier case and is omitted.

4.9 Multi-Dimensional Ito Processes

In this section, we extend the results in previous sections to multi-dimensional Ito processes.

A stochastic process W(t) = (W1(t);W2(t); � � � ;WI(t)) is said to be an I-dimensional

standard Wiener process if Wi(t); i = 1; � � � ; I are independent standard Wiener processes.

In general, an I-dimensional stochastic process is a Wiener process if each of its components

is a Wiener process. However, the components do not need to be independent of each other.

Let � = (�1; � � � ; �I)0 be a real-valued vector, where 0 denotes the corresponding trans-

pose. Similar to (4.8), W(t) is a standard Wiener process if and only if

Z�(t) = e�
0W(t)� 1

2
�0�t (4.88)

is a martingale (with respect to the Borel �ltration generated by W(t)).

A stochastic process X(t) = (X1(t); X2(t); � � � ; XN(t)) is a solution of an N -dimensional

SDE

dXn = �n(t;X)dt+
IX
i=1

�ni(t;X)dWi; (4.89)

n = 1; � � � ; N; if

Xn(t) = Xn(0) +

Z t

0
�n(s;X(s))ds

+
IX
i=1

Z t

0
�ni(s;X(s))dWi(s): (4.90)
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Easy to see that every term in (4.90) is well-de�ned.

The conditions which guarantee the existence and uniqueness of a solution remain the

same as that in the one-dimensional case, i.e. all �n(t; x) and �ni(t; x) are Lipschitz in x

and grow linearly in x.

The following theorems are the analogy of Theorems 4.3, 4.6 and Corollary 4.10.

Theorem 4.11(Ito's Lemma)

Let X(t) be a solution of the SDE (4.89) and g(t;x) = g(t; x1; � � � ; xN) a function which
is continuously di�erentiable in t and continuously twice di�erentiable in each xn. Then

g(t;X(t)) is a solution of the following SDE

dg(t;X) = [
@

@t
g(t;X) +

NX
n=1

�n(t;X)
@

@xn
g(t;X)

+
1

2

IX
i=1

NX
m=1

NX
n=1

�mi(t;X)�ni(t;X)
@2

@xm@xn
g(t;X)]dt

+
IX
i=1

NX
n=1

�ni(t;X)
@

@xn
g(t;X)dWi: (4.91)

It can be seen that Theorem 4.4 is an immediate consequence of this theorem with

g(t; x1; x2) = x1x2:

Theorem 4.12 Denote that �(t;x) = (�1(t;x); � � � ; �N(t;x))0 and �(t;x) =
h
�ni(t;x)

i
;

a N � I matrix. If �(t;x) is bounded, then for any bounded stochastic process b(t) =

(b1(t); � � � ; bN (t))0,

Zb(t) = e
R t
0
b0(s)dX(s)�

R t
0
b0(s)�(s;X(s))ds� 1

2

R t
0
b0(s)�0(s;X(s))�(s;X(s))b(s)ds (4.92)

is a martingale.

Theorem 4.13(Girsanov Theorem) Let X(t) be a solution of the SDE (4.89). For a given

vector-valued function �(t;x) = (�1(t;x); � � � ; �N(t;x))0, suppose that there is a bounded
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I-dimensional function (t;x) = (1(t;x); � � � ; I(t;x))0 such that

�(t;x) = �(t;x) + �(t;x)(t;x): (4.93)

Then, there exists an equivalent probability measure Q such that under Q, X(t) is a

solution of the following SDE

dXn = �n(t;X)dt+
IX
i=1

�ni(t;X)d ~Wi; (4.94)

n = 1; � � � ; N; where ~W(t) = ( ~W1(t); � � � ; ~WI(t)) is a standard Wiener process under Q.
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Chapter 5

Continuous-Time Finance Models

5.1 Security Markets and Valuation

Consider an economy characterised by a probability space (
;F ; P ), where 
 is the state

space, F the collection of all possible events and P the probability measure which may

be interpreted as the homogeneous belief among investors. In this economy, there is a

continuous trading security market with trading period [0; T ]: Ft; 0 � t � T is the corre-

sponding information structure with F0 = f�; 
g and FT = F : The precise de�nition of an
information structure and its interpretation are given in the sections 2.1 and 2.3. Assume

that there are N + 1 traded securities. Their prices at time t are p0(t); p1(t); � � � ; pN(t);
respectively. Among them, one, say the �rst security p0, is the money market account.

The spot rate for the money market account is de�ned as

r(t) = lim
�!0+

1� p(t; t + �)

�
; (5.1)

p(t; t+ �) is the price at time t of a default-free bond which pays one unit at time t+ �(see

Section 3.5), i.e. r(t) is the instantaneous interest rate at time t. Hence we have

p0(t) = e
R t
0
r(s)ds

; (5.2)
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or

dp0 = r(t)p0dt: (5.3)

Others are described by a system of stochastic di�erential equations:

dpn = �n(t;p)dt+
NX
i=1

�ni(t;p)dWi; (5.4)

n = 1; � � � ; N; where p = (p0; p1; � � � ; pN): Moreover, we assume that the matrix �(t;p) =

[�ni(t;p)] is nonsingular for all p > 0. The di�erence between the money market account

and other securities is that the former does not have a di�usion term hence is of �nite

variation.

A trading strategy �(t) = (�1(t); � � � ; �N(t))0 of an investor is a stochastic process on

[0; T ] such that the investor owns �n(t) shares of security n at time t. In these notes, we

restrict ourselves to those trading strategies which satisfy

E
� Z T

0
�2n(t)�

2
n(t;p(t))dt

�
<1; and E

� Z T

0
�2n(t)�

2
ni(t;p(t))dt

�
<1: (5.5)

A trading strategy �(t) is self-�nancing if for any t,

NX
n=0

�n(t)pn(t) =
NX
n=0

�n(0)pn(0) +
NX
n=0

Z t

0
�n(s)dpn(s): (5.6)

The second term in the right-hand side represents the capital gain achieved by �(t) over

[0; t). We may write equation (5.6) in matrix form

�0(t)p(t) = �0(0)p(0) +
Z t

0
�0(s)dp(s); (5.7)

or simply

d[�0(t)p(t)] = �0(t)dp(t): (5.8)

Example 5.1 Simple Self-Financing Strategies
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Let 0 = t0 < t1 < � � � < tM = T be a sequence of preset times. A trading strategy �(t)

is said to be simple if

�(t) = �(tm); tm � t < tm+1; m = 0; 1; � � � ;M � 1: (5.9)

A simple trading strategy is self-�nancing if and only if

NX
n=0

�n(tm)pn(tm+1) =
NX
n=0

�n(tm+1)pn(tm+1): (5.10)

Thus, under a simple trading strategy, trading occurs only at a �nite number of preset

times. The value of the portfolio held by the investor before each trading is equal to the

value of the portfolio after the trading.

The price system p(t) does not admit arbitrage if for any self-�nancing trading strategy

�(t), neither

�0(0)p(0) = 0 and �0(T )p(T ) > 0 (5.11)

nor

�0(0)p(0) < 0 and �0(T )p(T ) � 0 (5.12)

can happen.

A contingent claim is such that its payo�, made at time T , depends on the prevailing

state at time T . Thus any contingent claim is represented by a random variable X on

(
;F ; P ), where X is the value of the payo� at time T . A simple example is a European

option expired at time T . The above concept can be generalised to contingent claims paid

at other times. However, if we assume that any payo� will be deposited right away into the

money market account and there is no withdraw until time T , all situations are equivalent.

In these notes, we only consider the contingent claims whose second moments exist. Hence,

all contingent claims form a Hilbert space(Appendix B). A contingent claim X is said to

be attainable if there is a self-�nancing trading strategy �(t) such that

X = �0(0)p(0) +
Z T

0
�0(t)dp(t): (5.13)
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Similar to the discrete case, a market is called complete if every contingent claim is attain-

able. In general, a market might not be complete. However, if �(t;p) is nonsingular for

all p > 0, every contingent claim is attainable and the market is complete. This can be

proved by the Martingale Representation Theorem[8].

We now look into the valuation of contingent claims. We always assume that the price

system p(t) does not admit arbitrage. Let X be a contingent claim. If it is attainable,

then

X = �0(0)p(0) +
Z T

0
�0(t)dp(t);

for some self-�nancing trading strategy �(t). Naturally, we de�ne the price �(X) at time 0

of X as �0(0)p(0): Under the no-arbitrage condition, �(X) = �0(0)p(0) is uniquely de�ned

even if there is more than one self-�nancing trading strategy. It is also easy to see that

�(X) is a strictly positive, continuous, linear functional on the space of all contingent

claims, since the market is complete.

We are now able to price all contingent claims. However, the method we employ is not

very practical. The corresponding self-�nancing trading strategy is unsovable except for

a few cases. Below we are looking for a di�erent approach to de�ne the price functional

which will provide a practical method for pricing contingent claims.

Let us �rst de�ne the present value process of each security:

an(t) = e
�
R t
0
r(s)ds

pn(t); n = 0; 1; � � � ; N: (5.14)

Thus, an(t) is the time-0 value of pn(t), discounted at the short rate process. Thus, p0(t)

serves as a benchmarking security.

Lemma 5.1 Let �(t) be a self-�nancing trading strategy for p(t). Then it is also a

self-�nancing trading strategy for a(t) = (a0(t); a1(t); � � � ; aN(t))0. i.e.

�0(t)a(t) = �0(0)a(0) +
Z t

0
�0(s)da(s): (5.15)
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Proof:

d[�0(t)a(t)] = d[e�
R t
0
r(s)ds

�0(t)p(t)]

= e
�
R t
0
r(s)ds

d[�0(t)p(t)]� e
�
R t
0
r(s)ds

r(t)�0(t)p(t)dt

= e
�
R t
0
r(s)ds

�0(t)dp(t)� e
�
R t
0
r(s)ds

r(t)�0(t)p(t)dt

= �0(t)da(t):

Theorem 5.2 The price system p(t) does not admit arbitrage if and only if there is a

unique probability measure Q equivalent to P such that each present value process an(t)

is a martingale under Q. Furthermore, for any contingent claim X,

�(X) = EQ

�
e
�
R T
0
r(t)dt

X
�
: (5.16)

The probability measure Q is referred to as the risk-neutral probability measure.

Proof: Su�ciency. Let Q be a probability measure such that each present value process

an(t) is a martingale under Q. For any self-�nancing trading strategy �(t), (5.15) yields

�0(T )a(T ) = �0(0)a(0) +
Z T

0
�0(s)da(s): (5.17)

Since an(t) is a martingale under Q, we have

EQ

� Z T

0
�n(s)dan(s)

�
= 0:

Thus,

EQ

�
�0(T )a(T )

�
= �0(0)a(0):

It is easy to see that neither (5.11) nor (5.12) can happen under this identity.

Necessity. By the Riesz Representation Theorem(Appendix B), there is a unique ran-

dom variable Z such that

�(X) = E
�
e
�
R T
0
r(t)dt

XZ
�
: (5.18)
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Since � is strictly positive, so is Z. Furthermore,

E(Z) = �(e
R T
0
r(t)dt) = 1:

This is because the claim e
R T
0
r(t)dt can be replicated by depositing one unit into the money

market account. Thus, we may de�ne a probability measure Q as follows: for any F 2 F ,

Q(F ) = E
�
�FZ

�
; (5.19)

where �F is the indicator of F . It is easy to see that Q is equivalent to P since Z is the

Radon-Nikodym derivative of Q with respect to P and it is strictly positive.

We now show that each an(t) is a martingale under Q. For any t < s and F 2 Ft,
construct a self-�nancing simple trading strategy �(t) as follows:

1. �n0(t
0) = 0; n0 6= 0; n; 0 � t0 � T:

2. �0(t
0) = �n(t

0) = 0; 0 � t0 < t:

3. �n(t
0) = �F and �0(t

0) = �an(t)�F , for t � t0 < s:

4. �n(t
0) = 0 and �0(t

0) = [an(s)� an(t)]�F ; for s � t0:

This strategy says that we buy one share of security n at time t and then sell it at time s.

Since this strategy costs nothing the price of the terminal payo�

X = e
R T
0
r(u)du[an(s)� an(t)]�F

is zero by the no-arbitrage condition, i.e.

0 = �(X) = E
�
[an(s)� an(t)]�FZ

�
= EQ

�
[an(s)� an(t)]�F

�
:

Since F is arbitrary, an(t) is a martingale under Q.

The advantage of this result is that instead of �nding a self-�nancing strategy we only

need to �nd an equivalent probability measure such that under the new measure all present
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value processes are martingale. In many cases this can be done quite easily thanks to the

Girsanov theorem.

To illustrate how to use this technique, we reconsider the Black-Scholes model. Using

the same notations as in (4.51) and (4.52), the present value process

a(t) = e��tS(t):

Thus,

da = (�� �)adt + �adW:

Since a(t) is a martingale if and only if its drift term is zero. By Corollary 4.10, we may

choose

b(t) =
� � �

�
(5.20)

and

Z(t) = e
���
�
W (t)� 1

2
( ���
�

)2t: (5.21)

Under the probability measure

Q(F ) =

Z
F
Z(T )dP; (5.22)

a(t) is a martingale. Also, by Theorem 4.9,

~W (t) = �� � �

�
t+W (t) (5.23)

is a standard Wiener process under Q. Thus,

dS = �Sdt+ �SdW = �Sdt+ �Sd ~W; (5.24)

i.e. S(t) is a geometric Wiener process with parameters � and � under Q.

For any European option which pays �(S) at time T when the security value at T is

S, its price is

�(�(S)) = e��TEQ(�(S));
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which is exactly (4.62) and we obtain the Black-Scholes formula again.

We now consider some variations of the Black-Scholes pricing formula.

First, let us assume that in addition to the prices of a bond and a risky security subject

to Equations (4.51) and (4.52), the risky security pays dividends continuously at a �xed

rate �. This model was discussed in [27] and [28]. In this case the present value process is

a(t) = �

Z t

0
e��uS(u)du+ e��tS(t):

and

da = [a�
Z t

0
e��uS(u)du][(�+ � � �)dt+ �dW ]:

Thus,

b(t) =
� � �� �

�

and

Z(t) = e
�����
�

W (t)� 1
2
(
�����
�

)2t:

Under the probability measure

Q(F ) =

Z
F
Z(T )dP;

a(t) is a martingale and

~W (t) = �� � �� �

�
t+W (t)

is a standard Wiener process under Q. Thus,

dS = �Sdt+ �SdW = (� � �)Sdt+ �Sd ~W; (5.25)

i.e. S(t) is a geometric Wiener process with parameters � � � and � under Q. Let �d be

the price at t of a European call whose payo� at T is maxfS(T )�K; 0g: Then,

�d = e��(T�t)S(t)N(d̂1)�Ke��(T�t)N(d̂2); (5.26)
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where

d̂1 =
log(S(t)=K) + (� � � + 1

2
�2)(T � t)

�
p
T � t

and

d̂2 =
log(S(t)=K) + (� � � � 1

2
�2)(T � t)

�
p
T � t

:

Next, we derive the price of a futures option. A futures contract on an underlying

security promises its holder to purchase the security at a certain time at a certain price.

Its buyer and seller both have obligation to honour the contract. Hence the price of a

futures contract is stochastic during the lifetime of the contract. Let F (t) be the futures

price at time t of a risky security S(t) to be delivered at time T . Under the Black-Scholes

framework, it is easy to see that

F (t) = e�(T�t)EQ(S(T )) = e�(T�t)S(t);

where Q is de�ned in (5.22).

Suppose that a futures option maturing at time T1 < T with strike price K. Hence its

payo� is maxfF (T1)�K; 0g, delivered at T . The price of this option is

�f = e��TEQfmaxfF (T1)�K; 0gg;

which is equivalent to

�f = e��T1EQfmaxfS(T1)�Ke��(T�T1); 0gg
= e��T [F (0)N( ~d1)�KN( ~d2)]; (5.27)

where

~d1 =
log(F (0)=K) + 1

2
�2T1

�
p
T1

and

~d2 =
log(F (0)=K)� 1

2
�2T1

�
p
T1

:

The above formula is the well known Black futures formula.
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The �nal variation we consider in this section is the compound option discussed in [10].

This is the case of an option on an option. We illustrate this type of options by a call on a

call. We have seen that the payo� of a call maturing at time T is maxfS(T )�K; 0g. The
price of such a call at time T1 < T then is �c(T1; S(T1)) given in (4.63). Then a compound

call with strike price K1 maturing at T1 on a call with strike price K and maturing at T ,

has payo� maxf�c(T1; S(T1))�K1; 0g. The price of this compound call is

�co = e��T1EQ
n
maxf�c(T1; S(T1))�K1; 0g

o
:

Let x0 be the solution of S(0)e(��
1
2
�2)T1+�

p
T1x0N(d1(x0)) � Ke��(T�T1)N(d2(x0)) = K1,

where d1(x0) = d2(x0) + �
p
T � T1 and d2(x0) =

log(S(0)=K)+(�� 1
2
�2)T+�

p
T1x0

�
p
T�T1 .

Thus,

�co = S(0)

Z 1

x0

N(d1(x + �
q
T1))n(x)dx� e��TK

Z 1

x0

N(d2(x))n(x)dx� e��T1K1N(�x0):
(5.28)

It is important to point out that we choose the money market account as the bench-

marking security in this section because it is commonly used in practice and because it

results in simple derivation of the results. However, any positive valued security can serve

as the benchmarking security and there is a need to use other securities in some valuation

problems. The choice of a benchmarking security largely depends on what security market

we deal with. The money market account is often used for an equity market. For a bond

market we may use either the money market account or a long term zero-coupon bond. In

a swap market, a long term swap sometime is more appropriate.

5.2 Digital and Barrier Options

In this section, we apply the results in the previous section to exotic options. We focus on

some digital(binary) options and European-type barrier options under the Black-Scholes

framework. A digital option has a step payo� function, contingent on several random
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events. A simple example is the cash-or-nothing option which pays a �xed amount if

its underlying security reaches a predetermined level at a preset time, otherwise nothing.

Barrier options as their names suggested are those whose payo�s depend upon whether their

underlying security hits a predetermined barrier or not. Typically, there is a predetermined

valueH called barrier. When the value of the underlying security hits the barrier the status

of a predesignated option changes. Their de�nition will become clear later. Barrier options

are classi�ed as IN options and OUT options. Under an IN option, the predesignated option

starts when the value of the underlying security hits the barrier whilst under an OUT

option, the predesignated option starts immediately but will expire when the value of the

underlying security hits the barrier. In this section, we describe a down-and-in European

call option and a up-and-out European call option in details. Other barrier options such

as down-and-in put, down-and-out call, down-and-out put, up-and-out put, up-and-in call

and up-and-in put are similar and can be understood easily from their names.

Down-And-In European Call Like a usual European call, this option has strike price K

and expiration time T . A barrier H; H < S(0); is predetermined, where S(t) is the value

of the underlying security at time t. If S(t) hits the barrier H before T , the usual European

call starts and the terminal payo� is maxfS(T )�K; 0g. Otherwise the value of terminal

payo� is zero.

Up-And-Out European Call In this case, barrier H > S(0); If S(t) hits the barrier H

before T , the value of the terminal payo� is zero, Otherwise the value of the terminal

payo� is maxfS(T )�K; 0g.

From the above description, the terminal payo� of a barrier option depends not only

on the terminal value of the underlying security but its value in the past. Thus barrier

options are path-dependent options.

We now turn to the valuation problem for digital and barrier options. Again, we assume
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a Black-Scholes economy characterised by (4.51) and (4.52). Under the unique risk-neutral

probability measure Q de�ned by (5.20)-(5.22), the value of the risky security S(t) is a

geometric Wiener process satisfying

dS = �Sdt+ �SdW;

or

S(t) = e(��
�2

2
)t+�W (t):

The price of an option is then the discounted value of its terminal payo� under the risk-

neutral probability measure Q. We assume that � � �2

2
> 0. The case � � �2

2
< 0 can be

dealt with accordingly. The case � � �2

2
= 0 is the limiting case of either above case.

Three probability densities in (4.80) and (4.85) will play a very important role in

valuation.

Let

1. fH(t), the density that represents the probability when the value of the security S(t)

hits the barrier H at time t for the �rst time.

2. fD(x), the density of W (T ) on the event that the value of the security S(t) hits the

barrier H; H < S(0); before time T .

3. fU(x), the density of W (T ) on the event that the value of the security S(t) hits the

barrier H; H > S(0); before time T .

Remark. The �rst density might be defective depending on the value of H. The last two

densities are defective.

De�ne the �rst hitting time �H of S(t) as

�H = infft; S(t) = Hg: (5.29)

Then,

�H = infft; W (t)� bt = ag;
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where

a =
1

�
log(H=S(0)); b = � 1

�
(� � �2

2
): (5.30)

Then the density of �H is just a restatement of (4.80):

fH(t) =
jajp
2�t3

e�
b2

2t
(t+a=b)2 : (5.31)

Next, we derive the densities fD(x) and fU(x).

Let us �rst consider H < S(0). In this case, a < 0. (4.86) yields

Lemma 5.3 The defective density function of W (T ) on the event that the path S(t) hits

the barrier H;H < S(0); is

fD(x) =

8>><
>>:

1p
2�T

e�
1
2T
x2; x � 1

�
log(H=S(0))� ���2

2

�
T

1p
2�T

e
� 1

2T
[x� 2

�
log(H=S(0))]2+2

���
2

2

�2
log(H=S(0))

; x > 1
�
log(H=S(0))� ���2

2

�
T:

(5.32)

The derivation of fU(x) is very similar. In this case, a > 0. Thus, (4.85) yields

Lemma 5.4 The defective density function of W (T ) on the event that the path S(t) hits

the barrier H;H > S(0); is

fU (x) =

8>><
>>:

1p
2�T

e
� 1

2T
[x� 2

�
log(H=S(0))]2+2

���
2

2
�2

log(H=S(0))
; x < 1

�
log(H=S(0))� ���2

2

�
T

1p
2�T

e�
1
2T
x2 ; x � 1

�
log(H=S(0))� ���2

2

�
T

(5.33)

We are now in the position to value some digital and barrier options. We begin with a

digital option which pays a lump sum amount when the value of the underlying security

hits a predetermined barrier. Then we evaluate the down-and-in call option and the up-

and-out call option we have discussed. Other single barrier options can be evaluated in a

similar manner( also see [23, 26]).
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Suppose that a digital option pays amount K at the time when the value of its under-

lying security S(t) hits barrier H > S(0) before time T . The present value of its payo� is

e���HK. Thus, its price at time 0 is

�d = EQfe���HK�f�H�Tgg = K

Z T

0
e��tfH(t)dt

=
aKp
2�

Z T

0
t�

3
2 e��te�

b2

2t
(t+a=b)2dt

=
aKp
2�
e�a(b+

p
b2+2�)

Z T

0
t�

3
2 e
� b2+2�

2t
(t� ap

b2+2�
)2

dt

= Ke�a(b+
p
b2+2�)N(

p
b2 + 2�T � ap

T
) +Ke�a(b�

p
b2+2�)N(�

p
b2 + 2�T + ap

T
):

Noting that a = 1
�
log(H=S(0)); b = � 1

�
(� � �2

2
); and

p
b2 + 2� = 1

�
(� + �2

2
); we have

�d = K[
H

S(0)
]�1N( ~d1) +K[

H

S(0)
]2�=�

2

N( ~d2); (5.34)

where

~d1 =
log(S(0)=H) + (� + 1

2
�2)T

�
p
T

; ~d2 =
log(S(0)=H)� (� + 1

2
�2)T

�
p
T

:

We now consider barrier options. For the down-and-in call, the terminal payo� is

XDI =

8><
>:

maxfS(T )�K; 0g; if max0<t�T S(t) � H

0; if max0<t�T S(t) > H
(5.35)

Hence,

EQ

�
XDI

�
=

Z 1

�1
maxfS(0)e(���2

2
)T+�x �K; 0gfD(x)dx

=

Z 1

1
�
log(K=S(0))� �� �

2

2
�

T

�
S(0)e(��

�2

2
)T+�x �K

�
fD(x)dx

If K � H,

EQ

�
XDI

�
= S(0)

Z 1

1
�
log(K=S(0))� �� �

2

2
�

T
e(��

�2

2
)T+�x � 1p

2�T
e
� 1

2T
[x� 2

�
log(H=S(0))]2+2

���
2

2

�2
log(H=S(0))

dx
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� K

Z 1

1
�
log(K=S(0))� ���

2

2
�

T

1p
2�T

e
� 1

2T
[x� 2

�
log(H=S(0))]2+2

���
2

2

�2
log(H=S(0))

dx

= S(0)e�T+2
�+�

2

2

�2
log(H=S(0)) 1p

2�T

Z 1

1
�
log(K=S(0))� �� �

2

2
�

T
e�

1
2T

[x�( 2
�
log(H=S(0))+�T )]2dx

� Ke
2
�� �

2

2

�2
log(H=S(0)) 1p

2�T

Z 1

1
�
log(K=S(0))� �� �

2

2
�

T
e�

1
2T

[x� 2
�
log(H=S(0))]2dx:

A change of variables easily yields

EQ

�
XDI

�
= S(0)e�T+2

�+�
2

2

�2
log(H=S(0))

N(d3)�Ke
2
���

2

2

�2
log(H=S(0))

N(d4); (5.36)

where

d3 =
log H2

KS(0)
+ (� + �2

2
)T

�
p
T

and d4 =
log H2

KS(0)
+ (� � �2

2
)T

�
p
T

: (5.37)

If K < H, the density fD(x) is piecewise. Write

Z 1

1
�
log(K=S(0))� �� �

2

2
�

T
=

Z 1
�
log(H=S(0))� �� �

2

2
�

T

1
�
log(K=S(0))� �� �

2

2
�

T
+

Z 1

1
�
log(H=S(0))� �� �

2

2
�

T
:

It is easy to see from above and the Black-Scholes formula that

EQ

�
XDI

�
= S(0)e�T

n
e
2
�+�

2

2
�2

log(H=S(0))
N(d3(H)) +N(d1(K))�N(d1(H))

o

� K
n
e
2
���

2

2
�2

log(H=S(0))
N(d4(H)) +N(d2(K))�N(d2(H))

o
; (5.38)

where d1(H) and d2(H) are given in the Black-Scholes formula with strike price H, and

d3(H) and d4(H) are given in (5.38) with K = H. In summary, we have the following

theorem

Theorem 5.6 Let �(XDI) be the price of the down-and-in call with stike price K, barrier

H and expiration time T .

If K � H, then

�(XDI) = S(0)[H=S(0)]2�=�
2+1N(d3)�Ke��T [H=S(0)]2�=�

2�1N(d4); (5.39)
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where d3; d4 are given in (5.37).

If K < H, then

�(XDI) = S(0)
n
[H=S(0)]2�=�

2+1N(d3(H)) +N(d1(K))�N(d1(H))
o

� Ke��T
n
[H=S(0)]2�=�

2�1N(d4(H)) +N(d2(K))�N(d2(H))
o
; (5.40)

where d1(H); d2(H); d3(H) and d4(H) are given in (5.38).

Proof: It follows immediately from

�(XDI) = e��TEQ
�
XDI

�
:

To value the up-and-out option, we may use the put-call parity

�(X) = �(XUI) + �(XUO); (5.41)

where XUI and XUO denote the terminal payo� of a up-and-in option and a up-and-

out option, respectively, or calculate it directly using Lemma 5.5. We here show how to

calculate it directly. We suppose that K < H, otherwise the value is null. To keep the

notation simple, we use a and b instead for the moment. The defective density for the up-

and-out option is fUO(x) = f(x)�fU (x); where f(x) is the density of a normal distribution
with mean 0 and variance T . Thus,

fUO(x) =

8><
>:

1p
2�T

[e�
1
2T
x2 � e�

1
2T

(x�2a)2�2ab]; x � a+ bT

0; x > a + bT:
(5.42)

EQ

�
XUO

�
=

Z a+bT

�1
maxfS(T )�K; 0gfUO(x)dx

=

Z a+bT

1
�
log(K=S(0))� �� �

2

2
�

T
[S(T )�K][e�

1
2T
x2 � e�

1
2T

(x�2a)2�2ab]dx

= fS(0)e�T [N(d1(K))�N(d1(H))]�K[N(d2(K))�N(d2(H))]g

� fS(0)e�T+2
�+�

2

2
�2

log(H=S(0))[N(d3)�N(d3(H))]�Ke
2
���

2

2
�2

log(H=S(0))[N(d4)�N(d4(H))]g:
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We then have

Theorem 5.7 Let �(XUO) be the price of the down-and-in call with stike price K, barrier

H; H > K, and expiration time T . Then,

�(XUO) = S(0)
n
[N(d1(K))�N(d1(H))]� [H=S(0)]2�=�

2+1[N(d3)�N(d3(H))]
o

� Ke��T
n
[N(d2(K))�N(d2(H))]� [H=S(0)]2�=�

2�1[N(d4)�N(d4(H))]
o
: (5.43)

5.3 Interest Rate Models

5.4 Swaps and Swaptions
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Appendix A

Probability Theory

Let 
 be a space and F is a collection of subsets of 
. F is said to be a �-algebra on 
 if

it satis�es

1. The empty set � and the whole space 
 are in F ;

2. If F1; F2; � � � are in F , then [1n=1Fn is in F ;

3. If F is in F , its complement F c is in F .

The pair (
;F) is called a measurable space.

Let X be a real-value function de�ned on 
. If for any x 2 R; the set fX � xg 2 F ,
X is said to be measurable on (
;F).

Let P : F ! R+ satisfy

1. P (�) = 0; P (
) = 1;

2. For any F1 and F2 with F1 \ F2 = �; P (F1 [ F2) = P (F1) + P (F2);

P is called a probability measure on the space (
;F) and the triplet (
;F ; P ) is called a

probability space.
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A real-value function X de�ned on 
 is a random variable if it is measurable on

(
;F ; P ). The expectation of a random variable X is de�ned as

E(X) =

Z


XdP:

Given two �-algebras F1 and F2 on 
, we says F1 is �ner than F2 if F2 � F1

Suppose that F1 is coarser than F , the expectation of X conditional on F1, E(XjF1)

is a random variable on (
;F1; P ) such that for any F 2 F1;

Z
F
E(XjF1)dP =

Z
F
XdP:

Hence if F1 is �ner than F2, E(E(XjF1)jF2) = E(XjF2):

Let Ft; 0 � t � T be a collection of increasing (�ner and �ner) �-algebras which are

coarser that F . Then (
;F ;Ft; P ) is called a �ltered space and Ft; 0 � t � T is the

�ltration on the probability space (
;F ; P ).
A collection of random variables X(t); 0 � t � T is called a (adapted) stochastic

process if each X(t) is a random variable on (
;Ft; P ). A (adapted) stochastic process

X(t) is called a martingale with respect to Ft; 0 � t � T if for any s > t,

E
n
X(s) jFt

o
= X(t):

Levy's Convergence Theorem Let Fn(x) be a sequence of distribution functions and

~fn(z) be the corresponding characteristic functions. If there is a distribution function F (x)

with its characteristic function ~f(z) such that

1. ~f(z) is continuous at z = 0;

2. limn!1 ~fn(z) = ~f(z):

Then, Fn(x) is weakly convergent to F (x). Therefore,

lim
n!1Prfa < Xn � bg = Prfa < X � bg;
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where Xn and X has df Fn(x) and F (x).

Central Limit Theorem Let Xn be a sequence of iid random variables with mean �

and standard deviation �. Let

Yn =
X1 +X2 + � � �+Xnp

n�
;

the normalised sum of X1; � � � ; Xn. Then,

lim
n!1Prfa < Yn � bg = 1p

2�

Z b

a
e�

x2

2 dx:
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Appendix B

Functional Analysis

A linear space H is a Hilbert space if (i) there is a symmetric bilinear map (x; y)! x � y
from H�H to R such that x�x � 0; x�x = 0 only if x = 0. The norm of each x is de�ned

as kxk = p
x � x and the distance between x and y is d(x; y) = kx � yk; (ii) the space is

complete under this distance( i.e. the limit of any Cauchy sequence in H still belongs to

H).
A linear functional on H is a linear map from H to R. A linear functional f(x) is

said to be continuous if there is L > 0 such that kf(x)k � Lkxk. A set N in H is called

a hyperplane if there exist a continuous functional f(x) and a real number h such that

N = fx; f(x) = hg.

Riesz Representation Theorem Let f(x) be a continuous linear functional. Then

there is a unique z 2 H such that

f(x) = x � z; for any x 2 H:

An Application: Let H be the set of all random variables whose second moment exist

on a probablity space. De�ne X � Y = E(XY ): Then H is a Hilbert space. Hence for
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any continuous linear functional f(X), there is a unique random variable Z whose second

moment exists such that f(X) = E(XZ):

Hahn-Banach Theorem Let A and B be two disjoint convex sets in a Hilbert space

H. Assume that there exist a 2 A and b 2 B such that d(A;B) = ka�bk; where d(A;B) is
the distance between A and B de�ned by d(A;B) = inffkx�yk; forany x 2 A and y 2 Bg:
Then, there exists a z 2 H and a scalar h such that for any x 2 A; x � z > h, and for any

y 2 B; y � z < h: In other words, the sets A and B are separated by a hyperplane.

Proof: We �rst show that for any x 2 A; (x � a) � (b � a) � 0; and for any y 2
B; (y� b)� (a� b) � 0: Let 0 < � < 1. then x� = (1��)a+�x is in A from the convexity

of A. Thus,

kb� ak2 � kb� x�k2 = kb� a� �(x� a)k2 = kb� ak2 � 2�(b� a) � (x� a) + �2kx� ak2:

This gives

0 � �2(b� a) � (x� a) + �kx� ak2:

Let �! 0: We obtain the �rst assertion. The second assertion can be obtained similarly.

Now, let z = a� b: Then we have

x � z � a � z; y � z � b � z;

for any x 2 A and y 2 B. Since ka � bk > 0; a � z > b � z: We may choose h such that

a � z > h > b � z; we prove the theorem.

Remark. If A is compact(equivalently closed and bounded in a �nite dimensional space)

and B is closed, the distance condition in the above theorem is satis�ed automatically.

To show that in Theorem 1.2 of Chapter 1, there exist a 2 A and b 2 B(0; p) satisfying
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the condition in the Hahn-Banach Theorem, we de�ne the set

A1 = fx 2 A; x0 + � � �+ xJ =
1

2
g:

From the above remark, there are a 2 A1 and b 2 B(0; p) such that d(A1;B(0; p)) =

ka� bk: We will show it is true for A as well. Actually, it su�ces to show d(A1;B(0; p)) �
d(A;B(0; p)).

For any x 2 A; let bx 2 B(0; p) such that

kx� bxk = d(x;B(0; p)):

Then for any y 2 B(0; p); (x� bx)0(y� bx) � 0: Thus, (x� bx)0(y� bx) = 0; which implies

(x � bx)
0y = 0; for any y. Choose 0 < � � 1 such that �x 2 A1: We then have from the

same argument that

k�x� b�k = d(�x;B(0; p));

and for any y 2 B(0; p), (�x� b�)
0y = 0; for any y. Hence, b� = �bx: This implies that

d(�x;B(0; p)) = �d(x;B(0; p)) � d(x;B(0; p)):

We complete our proof.
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